Analysis of two-dimensional transient conduction–radiation problems in an anisotropically scattering participating enclosure using the lattice Boltzmann method and the control volume finite element method

2011 ◽  
Vol 182 (7) ◽  
pp. 1402-1413 ◽  
Author(s):  
Raoudha Chaabane ◽  
Faouzi Askri ◽  
Sassi Ben Nasrallah
2021 ◽  
Author(s):  
Raoudha Chaabane ◽  
Abdelmajid Jemni ◽  
Fethi Aloui

Abstract In this paper, a gas-kinetic Bhatnagar-Gross-Krook (BGK) model is constructed for the Rayleigh-Benard thermal convection transfer in a two-dimensional cavity containing an absorbing, emitting, and scattering medium, where the flow field and temperature field are described by two coupled Lattice Boltzmann Method (LBM) BGK models. Heat radiation is solved using the Control Volume Finite Element Method (CVFEM). The two-dimensional Rayleigh-Benard thermal convection with radiation is studied and numerical results are compared with some available benchmark solutions and a good agreement has been observed.


2017 ◽  
Vol 139 (9) ◽  
Author(s):  
Raoudha Chaabane ◽  
Faouzi Askri ◽  
Abdelmajid Jemni ◽  
Sassi Ben Nasrallah

In this paper, a new hybrid numerical algorithm is developed to solve coupled convection–radiation heat transfer in a two-dimensional cavity containing an absorbing, emitting, and scattering medium. The radiative information is obtained by solving the radiative transfer equation (RTE) using the control volume finite element method (CVFEM), and the density, velocity, and temperature fields are calculated using the two double population lattice Boltzmann equation (LBE). To the knowledge of the authors, this hybrid numerical method is applied at the first time to simulate combined transient convective radiative heat transfer in 2D participating media. In order to test the efficiency of the developed method, two configurations are examined: (i) free convection with radiation in a square cavity bounded by two horizontal insulating sides and two vertical isothermal walls and (ii) Rayleigh–Benard convection with and without radiative heat transfer. The obtained results are validated against available works in literature, and the proposed method is found to be efficient, accurate, and numerically stable.


Author(s):  
Zhe Li ◽  
Julien Favier

This chapter presents several partitioned algorithms to couple lattice Boltzmann method (LBM) and finite element method (FEM) for numerical simulation of transient fluid-structure interaction (FSI) problems with large interface motion. Partitioned coupling strategies allow one to solve separately the fluid and solid subdomains using adapted or optimized numerical schemes, which provides a considerable flexibility for FSI simulation, especially for more realistic and industrial applications. However, partitioned coupling procedures often encounter numerical instabilities due to the fact that the time integrations of the two subdomains are usually carried out in a staggered way. As a consequence, the energy transfer across the fluid-solid interface is usually not correctly simulated, which means numerical energy injection or dissipation might occur at the interface with partitioned methods. The focus of the present chapter is given to the energy conservation property of different partitioned coupling strategies for FSI simulation.


Sign in / Sign up

Export Citation Format

Share Document