International Polymer Processing
Latest Publications


TOTAL DOCUMENTS

2206
(FIVE YEARS 226)

H-INDEX

38
(FIVE YEARS 4)

Published By Carl Hanser Verlag Gmbh & Co Kg

2195-8602, 0930-777x

2021 ◽  
Vol 36 (5) ◽  
pp. 557-563
Author(s):  
A. G. Toroslu

Abstract Recycling of plastic materials has become more environmentally important than recycling of other materials. The most important problem during recycling is the presence of oil, dirt, dust and metal particles that are mixed with plastic materials. These mixtures can change their its mechanical and physical properties and it is quite costly to remove them completely. Removing iron alloy particles from plastic is possible by using the magnetic method. However, removing non-metallic materials requires extra processing. In this study, the use of recycled High-Density Polyethylene (rHDPE) without an expensive cleaning processes has been investigated. Different amounts of aluminium oxide (Al2O3) were added to High Density Polyethylene (HDPE) to simulate the effect of non-metallic material involved. The effect of these contamination rates on the mechanical and physical properties of HDPE was examined in detail. For this purpose, recyclable materials were produced by mixing rHDPE with 1%, to 7% Al2O3 . The results show that up to 7% of the mixture has acceptable effects on the properties of HDPE. When the results of the experiments are examined, it is observed that there is a 3.74% change in the elastic modulus of the material. This means, that up to 7% non-metal contaminated rHDPE material can be used without any costly recycling process.


2021 ◽  
Vol 36 (5) ◽  
pp. 596-607
Author(s):  
O. Ekşi

Abstract The aim of this study is to determine the thickness distribution of a food package using a non-destructive method. Initially, thickness measurements were carried out using an experimental procedure for thermoformed samples that were used for food packaging. Additionally, in this study, image analysis was used for the first time to determine the thickness distribution of the thermoformed products non-destructively. Image analysis software was employed for the estimation of thickness distribution. Measured thickness results were compared to those estimated using image analysis. Based on the results of the current study, image analysis may be an alternative method for non-destructive testing of thermoformed food packages even in a mass production line. Image analysis can be used to determine not only thickness distribution but also the weakest regions in a food package.


2021 ◽  
Vol 36 (5) ◽  
pp. 545-556
Author(s):  
A. Hamza ◽  
R. K. Arya ◽  
A. D. Palsodkar ◽  
G. R. Bhadu ◽  
S. J. A. Rizvi

Abstract Isotactic polypropylene (iPP) was nucleated in-situ with calcium pimelate during melt compounding. Calcium pimelate is a highly effective β-nucleator for isotactic polypropylene (iPP). The β-nucleated iPP was characterized by wide angle x-ray diffraction (WAXD) and differential scanning calorimetry (DSC) for its crystallinity and crystal structure. In addition, the injection-molded samples were tested for thermo-mechanical properties. It is found that very low quantity (< 0.1 wt. %) of β-nucleator is required to produce sufficiently high β-crystal fraction (Kβ) in isotactic polypropylene. β-nucleated iPP shows increment of 11 to 14 °C in its heat deflection temperature (HDT). It was also observed that slow cooling rate of β-nucleated iPP promotes the formation of β-crystals and that tensile stretching leads to complete transformation of β crystals into a-crystals at room temperature. It was also revealed that the presence of maleic anhydride grafted polypropylene (PP-g-MA), a well-known coupling agent (or compatibilizer), may reduce the (Kβ) value to a marginal extent. It was also observed that the thermo-mechanical properties were not much affected by the presence of PP-g-MA. Therefore, calcium pimelate may be used as β-nucleator in case of neat as well as reinforced polypropylene containing maleic anhydride as coupling agent.


2021 ◽  
Vol 36 (5) ◽  
pp. 577-585
Author(s):  
K. Tao ◽  
K. Yamada ◽  
S. Higashi ◽  
K. Kago ◽  
H. Takeshita ◽  
...  

Abstract This work examined the relationship between changes in molecular orientation and the heat resistance (heat distortion temperature) of polystyrene injection moldings following heat treatment below the glass transition temperature. Molecular orientation around the core layer of the injection moldings was found to be relaxed by the heat treatment. Also, in the untreated specimen, the molecular orientation around the core layer was relaxed from 60°C during the heating process. Since loss tangent (tanδ) also increased from 60°C during the heating process in the untreated specimen, it was considered that the increase in tanδ occurred with the molecular motion due to the relaxation of molecular orientation from 60°C. After the heat treatment, because of the relaxation of molecular orientation around the core layer by the heat treatment, the relaxation of molecular orientation from 60 °C did not occur during the subsequent heating process, and the tanδ of the polymer between 60 and 90 °C was decreased. Because this decrease in the tanδ over this temperature range improved the heat resistance of the material, the enhanced heat resistance by the heat treatment was attributed to the suppression of the relaxation of molecular orientation from 60°C during the heating process. Furthermore, relaxation of molecular orientation and enthalpy relaxation were related to improvement in the heat resistance.


2021 ◽  
Vol 36 (5) ◽  
pp. 529-544
Author(s):  
W. Roland ◽  
C. Marschik ◽  
M. Kommenda ◽  
A. Haghofer ◽  
S. Dorl ◽  
...  

Abstract The traditional approach to modeling the polymer melt flow in single-screw extruders is based on analytical and numerical analyses. Due to increasing computational power, data-driven modeling has grown significantly in popularity in recent years. In this study, we compared and evaluated databased modeling approaches (i. e., gradient-boosted trees, artificial neural networks, and symbolic regression models based on genetic programming) in terms of their ability to predict – within a hybrid modeling framework – the three-dimensional non-linear throughput-pressure relationship of metering channels in single-screw extruders. By applying the theory of similarity to the governing flow equations, we identified the characteristic dimensionless influencing parameters, which we then varied to create a large dataset covering a wide range of possible applications. For each single design point we conducted numerical simulations and obtained the dimensionless flow rate. The large dataset was divided into three independent sets for training, interpolation, and extrapolation, the first being used to generate and the remaining two to evaluate the models. Further, we added two features derived from expert knowledge to the models and analyzed their influence on predictive power. In addition to prediction accuracy and interpolation and extrapolation capabilities, we evaluated model complexity, interpretability, and time required to learn the models. This study provides a rigorous analysis of various data-based modeling approaches applied to simulation data in extrusion.


2021 ◽  
Vol 36 (5) ◽  
pp. 586-595
Author(s):  
E. S. A. Khalaf

Abstract In the present study, a series of mixes based on different concentrations of carbon black (CB) as a reinforcing filler and sugarcane bagasse as supplementary filler, were investigated to examine their effects on the mechanical properties of styrene butadiene rubber (SBR) composites. To this end, the first group of mixes deals with the effect of different concentrations of CB ranging from 0 to 80 phr at fixed bagasse concentration of 25 phr. The second group of mixes involves the addition of bagasse with concentrations varying from 10 to 50 phr at 10 intervals with fixed CB concentration of 40 phr. The sizes of the employed ground bagasse powder (GBP) in all prepared formulations ranged from 20 to 180 μm. In addition, 2.5 phr of maleic anhydride (MA) was added to enhance the interfacial adhesion between SBR and agricultural waste fillers (i. e. bagasse). Tensile strength, elongation at break, modulus at 100% elongation, resilience, hardness (Shore A), abrasion and degree of swelling of the rubber vulcanizates were studied. The prepared samples were also analyzed by scanning electron microscopy (SEM) to show the distribution of fiber and the occurrence of fiber-matrix adhesion. The optimum concentration of bagasse to be used simultaneously with CB in SBR composites was found to be 30 phr. Overall, it was found from the obtained results that the addition of GBP up to 50 phr is feasible without impairing the mechanical properties of SBR vulcanizates.


2021 ◽  
Vol 36 (5) ◽  
pp. 620-629
Author(s):  
L.-Y. Yu ◽  
B.-C. Xue ◽  
M.-M. Qian ◽  
Y.-X. Li ◽  
Z.-X. Chen ◽  
...  

Abstract Biochar has been exploited as a substitution of carbon black in the rubber industry and various biochars exhibit diverse reinforcing abilities due to the different compositions. This work aims at studying the effect of silica on the modification process and reinforcing performance through the comparison of three biochars with different contents of silica, pyrolytic rice husks (PRH, 34 wt%), pyrolytic bamboos (PB, 7 wt%) and pyrolytic corn cobs (PC, 0.4 wt%). The results reveal that PRH requires higher rotational speed (300 min–1) than PB (200 min–1) and PC (200 min–1) to achieve similar particle sizes during the ball milling process because of the aggregations of higher silica content. Meanwhile, silica-rich pyrolytic biomass exhibits enhanced reinforcement on mechanical properties and thermal stability of rubber, and the elongation at break of vulcanizates continues to improve with increasing silica contents. Combined with the energy consumption and reinforcement, biochar containing a little amount of silica is more suitable to be widely used as bio-filler in rubber industry. This work should serve as a valuable reference to select appropriate biochar for the production of bio-fillers with high reinforcement.


2021 ◽  
Vol 36 (5) ◽  
pp. 499-507
Author(s):  
W. P. Ma ◽  
H. C. Bu ◽  
F. Y. Wang ◽  
H. Y. Yang ◽  
Y. Xu ◽  
...  

Abstract Compared to other conventional joining methods, induction welding offers the superiority of avoiding mechanical degradation and satisfying the need for weight reduction in the aircraft industry. In this paper, a metal mesh was adapted as an induction component in the induction welding of polyetheretherketone (PEEK) with various currents. The effect of welding current on the microstructure and mechanical properties of the induction welding joint was further investigated. The results indicate that induction welding joints with the narrow thickness of the fusion zone and high tensile strength can be attained in the welding current range of 7.05 A to 11.05 A. However, when the current exceeds 13.91 A, the excessive heat input leads to the unsteady flow of PEEK or even thermal oxidative degradation and thermal decomposition, which increases the thickness of the fusion zone and reduces the tensile strength of the joint. In addition, the principal fracture mode presents cohesive failure, thereby promoting the tensile strength of the joint.


2021 ◽  
Vol 36 (5) ◽  
pp. 508-518
Author(s):  
J. Winck ◽  
S. Frerich

Abstract In this contribution, the fluid flow and mixing dynamics inside planetary roller extruders are simulated using the finite element method (FEM) and the mesh superposition technique (MST). Three-dimensional configurations with planetary spindles of varying number and geometry of planetary spindles were created to analyse the influence of the spindle configuration and the rotational speed on the process behavior. Therefore, pressure gradients, flow velocities and directions, shear rates, the mixing index and residence time distributions were evaluated. The distributive and dispersive mixing efficiencies varied depending on the planetary spindle configuration, and these configurations thus suit different processing tasks. In comparison to the standard planetary spindles, the TT3 spindles, with their incomplete toothing, and the knob spindles, with their double transversal helical toothing, showed intense axial and radial mixing. In general, the mixing performance of the planetary roller extruder is explained by a high rate of extensional flow and frequent changes in flow type. The reported numerical approach allows, for the first time, a comprehensive observation of the process behavior of planetary roller extruders.


Sign in / Sign up

Export Citation Format

Share Document