scholarly journals Spinney: Post-processing of first-principles calculations of point defects in semiconductors with Python

2021 ◽  
Vol 264 ◽  
pp. 107946
Author(s):  
Marco Arrigoni ◽  
Georg K.H. Madsen
2021 ◽  
Vol 5 (8) ◽  
Author(s):  
Yu Jin ◽  
Marco Govoni ◽  
Gary Wolfowicz ◽  
Sean E. Sullivan ◽  
F. Joseph Heremans ◽  
...  

2018 ◽  
Vol 48 (1) ◽  
pp. 1-26 ◽  
Author(s):  
Cyrus E. Dreyer ◽  
Audrius Alkauskas ◽  
John L. Lyons ◽  
Anderson Janotti ◽  
Chris G. Van de Walle

Point defects in semiconductors and insulators form an exciting system for realizing quantum technologies, including quantum computing, communication, and metrology. Defects provide a platform that combines the environmental isolation necessary to maintain the coherence of quantum states with the ability to perform electrical and optical manipulation. First-principles calculations play a crucial role in identifying, characterizing, and developing defects for quantum applications. We review the first-principles methodologies for calculating the relevant structural, electronic, vibrational, optical, and magnetic properties of defects for quantum technologies. We illustrate the utility and accuracy of these techniques by using examples from the literature. We also point out areas in which further development of the computational techniques is desirable.


2011 ◽  
Vol 1363 ◽  
Author(s):  
G.J. Ackland ◽  
T.P.C. Klaver ◽  
D.J. Hepburn

ABSTRACTFirst principles calculations have given a new insight into the energies of point defects in many different materials, information which cannot be readily obtained from experiment. Most such calculations are done at zero Kelvin, with the assumption that finite temperature effects on defect energies and barriers are small. In some materials, however, the stable crystal structure of interest is mechanically unstable at 0K. In such cases, alternate approaches are needed. Here we present results of first principles calculations of austenitic iron using the VASP code. We determine an appropriate reference state for collinear magnetism to be the antiferromagnetic (001) double-layer (AFM-d) which is both stable and lower in energy than other possible models for the low temperature limit of paramagnetic fcc iron. Another plausible reference state is the antiferromagnetic (001) single layer (AFM-1). We then consider the energetics of dissolving typical alloying impurities (Ni, Cr) in the materials, and their interaction with point defects typical of the irradiated environment. We show that the calculated defect formation energies have fairly high dependence on the reference state chosen: in some cases this is due to instability of the reference state, a problem which does not seem to apply to AFM-d and AFM-1. Furthermore, there is a correlation between local free volume magnetism and energetics. Despite this, a general picture emerge that point defects in austenitic iron have geometries similar to those in simpler, non-magnetic, thermodynamically stable FCC metals. The defect energies are similar to those in BCC iron. The effect of substitutional Ni and Cr on defect properties is weak, rarely more than tenths of eV, so it is unlikely that small amounts of Ni and Cr will have a significant effect on the radiation damage in austenitic iron at high temperatures.


2017 ◽  
Vol 7 ◽  
pp. 3209-3215 ◽  
Author(s):  
Soleyman Majidi ◽  
Amine Achour ◽  
D.P. Rai ◽  
Payman Nayebi ◽  
Shahram Solaymani ◽  
...  

2015 ◽  
Vol 91 (15) ◽  
Author(s):  
Sanjeev K. Nayak ◽  
Hans T. Langhammer ◽  
Waheed A. Adeagbo ◽  
Wolfram Hergert ◽  
Thomas Müller ◽  
...  

2014 ◽  
Vol 16 (40) ◽  
pp. 22299-22308 ◽  
Author(s):  
J. Bekaert ◽  
R. Saniz ◽  
B. Partoens ◽  
D. Lamoen

Starting from first-principles calculations, many experimental observations such as photoluminescence spectra, charge carrier densities and freeze-out can be explained.


Sign in / Sign up

Export Citation Format

Share Document