point defects
Recently Published Documents


TOTAL DOCUMENTS

5036
(FIVE YEARS 573)

H-INDEX

114
(FIVE YEARS 14)

2022 ◽  
Vol 7 (1) ◽  
Author(s):  
M. Garnica ◽  
M. M. Otrokov ◽  
P. Casado Aguilar ◽  
I. I. Klimovskikh ◽  
D. Estyunin ◽  
...  

AbstractWe study the surface crystalline and electronic structures of the antiferromagnetic topological insulator MnBi2Te4 using scanning tunneling microscopy/spectroscopy (STM/S), micro(μ)-laser angle-resolved photoemission spectroscopy (ARPES), and density functional theory calculations. Our STM images reveal native point defects at the surface that we identify as BiTe antisites and MnBi substitutions. Bulk X-ray diffraction further evidences the presence of the Mn-Bi intermixing. Overall, our characterizations suggest that the defects concentration is nonuniform within crystals and differs from sample to sample. Consistently, the ARPES and STS experiments reveal that the Dirac point gap of the topological surface state is different for different samples and sample cleavages, respectively. Our calculations show that the antiparallel alignment of the MnBi moments with respect to those of the Mn layer can indeed cause a strong reduction of the Dirac point gap size. The present study provides important insights into a highly debated issue of the MnBi2Te4 Dirac point gap.


Author(s):  
Paweł Ostachowski ◽  
Anna Paliborek ◽  
Włodzimierz Bochniak ◽  
Marek Łagoda

AbstractThe paper contains a set of experimental data on the influence of the KOBO extrusion (extrusion with simultaneous cyclic torsion) on mechanical properties of pure zinc and proves that they can be controlled in order to achieve the desired final values, while tensile characteristics may either show monotonic course or contain the Lüders-type effect. It has been found that the mechanical properties of the KOBO extruded zinc are not linked to the grain size, thus proving the hypothesis about the dominating role of over-equilibrial concentration of point defects (including their clusters).


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 478
Author(s):  
Roman Hrytsak ◽  
Pawel Kempisty ◽  
Ewa Grzanka ◽  
Michal Leszczynski ◽  
Malgorzata Sznajder

The formation and diffusion of point defects have a detrimental impact on the functionality of devices in which a high quality AlN/GaN heterointerface is required. The present paper demonstrated the heights of the migration energy barriers of native point defects throughout the AlN/GaN heterointerface, as well as the corresponding profiles of energy bands calculated by means of density functional theory. Both neutral and charged nitrogen, gallium, and aluminium vacancies were studied, as well as their complexes with a substitutional III-group element. Three diffusion mechanisms, that is, the vacancy mediated, direct interstitial, and indirect ones, in bulk AlN and GaN crystals, as well at the AlN/GaN heterointerface, were taken into account. We showed that metal vacancies migrated across the AlN/GaN interface, overcoming a lower potential barrier than that of the nitrogen vacancy. Additionally, we demonstrated the effect of the inversion of the electric field in the presence of charged point defects VGa3− and VAl3− at the AlN/GaN heterointerface, not reported so far. Our findings contributed to the issues of structure design, quality control, and improvement of the interfacial abruptness of the AlN/GaN heterostructures.


2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Christoph Freysoldt ◽  
Jörg Neugebauer ◽  
Anne Marie Z. Tan ◽  
Richard G. Hennig

2022 ◽  
pp. 152461
Author(s):  
Shengsheng Wei ◽  
Zhipeng Yin ◽  
Jiao Bai ◽  
Weiwei Xie ◽  
Fuwen Qin ◽  
...  

2022 ◽  
pp. 152473
Author(s):  
Wandong Xing ◽  
Haozhi Sha ◽  
Fanyan Meng ◽  
Rong Yu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document