scholarly journals Effect of point defects on the electronic density states of SnC nanosheets: First-principles calculations

2017 ◽  
Vol 7 ◽  
pp. 3209-3215 ◽  
Author(s):  
Soleyman Majidi ◽  
Amine Achour ◽  
D.P. Rai ◽  
Payman Nayebi ◽  
Shahram Solaymani ◽  
...  
2019 ◽  
Vol 4 (3) ◽  
pp. 70 ◽  
Author(s):  
Robert Pilemalm ◽  
Sergei Simak ◽  
Per Eklund

ScMN2-type (M = V, Nb, Ta) phases are layered materials that have been experimentally reported for M = Ta and Nb. They are narrow-bandgap semiconductors with potentially interesting thermoelectric properties. Point defects such as dopants and vacancies largely affect these properties, motivating the need to investigate these effects. In particular, asymmetric peak features in the density of states (DOS) close to the highest occupied state is expected to increase the Seebeck coefficient. Here, we used first principles calculations to study the effects of one vacancy or one C, O, or F dopant on the DOS of the ScMN2 phases. We used density functional theory to calculate formation energy and the density of states when a point defect is introduced in the structures. In the DOS, asymmetric peak features close to the highest occupied state were found as a result of having a vacancy in all three phases. Furthermore, one C dopant in ScTaN2, ScNbN2, and ScVN2 implies a shift of the highest occupied state into the valence band, while one O or F dopant causes a shift of the highest occupied state into the conduction band.


2011 ◽  
Vol 1363 ◽  
Author(s):  
G.J. Ackland ◽  
T.P.C. Klaver ◽  
D.J. Hepburn

ABSTRACTFirst principles calculations have given a new insight into the energies of point defects in many different materials, information which cannot be readily obtained from experiment. Most such calculations are done at zero Kelvin, with the assumption that finite temperature effects on defect energies and barriers are small. In some materials, however, the stable crystal structure of interest is mechanically unstable at 0K. In such cases, alternate approaches are needed. Here we present results of first principles calculations of austenitic iron using the VASP code. We determine an appropriate reference state for collinear magnetism to be the antiferromagnetic (001) double-layer (AFM-d) which is both stable and lower in energy than other possible models for the low temperature limit of paramagnetic fcc iron. Another plausible reference state is the antiferromagnetic (001) single layer (AFM-1). We then consider the energetics of dissolving typical alloying impurities (Ni, Cr) in the materials, and their interaction with point defects typical of the irradiated environment. We show that the calculated defect formation energies have fairly high dependence on the reference state chosen: in some cases this is due to instability of the reference state, a problem which does not seem to apply to AFM-d and AFM-1. Furthermore, there is a correlation between local free volume magnetism and energetics. Despite this, a general picture emerge that point defects in austenitic iron have geometries similar to those in simpler, non-magnetic, thermodynamically stable FCC metals. The defect energies are similar to those in BCC iron. The effect of substitutional Ni and Cr on defect properties is weak, rarely more than tenths of eV, so it is unlikely that small amounts of Ni and Cr will have a significant effect on the radiation damage in austenitic iron at high temperatures.


2015 ◽  
Vol 91 (15) ◽  
Author(s):  
Sanjeev K. Nayak ◽  
Hans T. Langhammer ◽  
Waheed A. Adeagbo ◽  
Wolfram Hergert ◽  
Thomas Müller ◽  
...  

2014 ◽  
Vol 16 (40) ◽  
pp. 22299-22308 ◽  
Author(s):  
J. Bekaert ◽  
R. Saniz ◽  
B. Partoens ◽  
D. Lamoen

Starting from first-principles calculations, many experimental observations such as photoluminescence spectra, charge carrier densities and freeze-out can be explained.


2013 ◽  
Vol 250 (4) ◽  
pp. 793-800 ◽  
Author(s):  
Yuri F. Zhukovskii ◽  
Sergei Piskunov ◽  
Jevgenijs Begens ◽  
Jurijs Kazerovskis ◽  
Oleg Lisovski

2017 ◽  
Vol 5 (13) ◽  
pp. 6200-6210 ◽  
Author(s):  
Dan Han ◽  
Mao-Hua Du ◽  
Chen-Min Dai ◽  
Deyan Sun ◽  
Shiyou Chen

First-principles calculations show that the photovoltaic efficiency of solar cells using Bi2S3 as the light absorber is intrinsically limited by its point defects, while Cu, Br and Cl doped Bi2S3 may be an ideal n-type electron acceptor or counter electrode material.


2014 ◽  
Vol 28 (02) ◽  
pp. 1450008 ◽  
Author(s):  
JIAN-MIN ZHANG ◽  
WANGXIANG FENG ◽  
PEI YANG ◽  
LIJIE SHI ◽  
YING ZHANG

Using first-principles calculations, we systematically investigate the defect physics in topological insulator AuTlS 2. An optimal growth condition is explicitly proposed to guide for the experimental synthesis. The stabilities of various native point defects under different growth conditions and different carrier environments are studied in detail. We show that the p-type conductivity is strongly preferred in AuTlS 2, and the band gap can be engineered by the control of intrinsic defects. Our results demonstrate that AuTlS 2 is an ideal p-type topological insulator which can be easily integrated with traditional semiconductor.


Sign in / Sign up

Export Citation Format

Share Document