scholarly journals GFCCLib: Scalable and efficient coupled-cluster Green's function library for accurately tackling many-body electronic structure problems

2021 ◽  
Vol 265 ◽  
pp. 108000
Author(s):  
Bo Peng ◽  
Ajay Panyala ◽  
Karol Kowalski ◽  
Sriram Krishnamoorthy
1994 ◽  
Vol 03 (02) ◽  
pp. 523-589 ◽  
Author(s):  
T.T.S. KUO ◽  
YIHARN TZENG

We present an elementary and fairly detailed review of several Green’s function methods for treating nuclear and other many-body systems. We first treat the single-particle Green’s function, by way of which some details concerning linked diagram expansion, rules for evaluating Green’s function diagrams and solution of the Dyson’s integral equation for Green’s function are exhibited. The particle-particle hole-hole (pphh) Green’s function is then considered, and a specific time-blocking technique is discussed. This technique enables us to have a one-frequency Dyson’s equation for the pphh and similarly for other Green’s functions, thus considerably facilitating their calculation. A third type of Green’s function considered is the particle-hole Green’s function. RPA and high order RPA are treated, along with examples for setting up particle-hole RPA equations. A general method for deriving a model-space Dyson’s equation for Green’s functions is discussed. We also discuss a method for determining the normalization of Green’s function transition amplitudes based on its vertex function. Some applications of Green’s function methods to nuclear structure and recent deep inelastic lepton-nucleus scattering are addressed.


1972 ◽  
Vol 27 (4) ◽  
pp. 545-552 ◽  
Author(s):  
R. Albat

Abstract An Approximation of Löwdin's Natural Orbitals for Molecules with a Green's Function Method The many-body-pertubation theorie of the single-particle Green's function is used to get an approximate first-order density matrix. Slightly modified SCF-orbitals form the basis for the expansion. The mass-operator in Dyson's equation is considered up to second order in the Perturbation. In the present form the method is only applicable to ground states with closed shells. The ground states of the molecules LiH and NH3 serve as examples to demonstrate the usefulness of the directly calculated natural orbitals for application in the C I-method. The natural orbitals give a much better convergence of the C I-expansion than the SCF-orbitals do.


2014 ◽  
Vol 112 (22) ◽  
Author(s):  
Huabing Yin ◽  
Yuchen Ma ◽  
Jinglin Mu ◽  
Chengbu Liu ◽  
Michael Rohlfing

Sign in / Sign up

Export Citation Format

Share Document