Thermal diffusion factor of model 2CLJD mixtures from non-equilibrium molecular dynamics

2008 ◽  
Vol 451 (4-6) ◽  
pp. 209-212 ◽  
Author(s):  
Saeed Yeganegi ◽  
Muhammad Shadman
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xiaoyu Chen ◽  
Ruquan Liang ◽  
Lichun Wu ◽  
Gan Cui

Abstract Equimolar mixtures composed of isomers were firstly used to investigate the molecular branching effect on thermal diffusion behavior, which was not disturbed by factors of molecular mass and composition in this work. Eight heptane isomers, including n-heptane, 2-methylhexane, 3-methylhexane, 2,2-dimethylpentane, 2,3-dimethylpentane, 2,4-dimethylpentane, 3,3-dimethylpentane and 3-ethylpentane, were chosen as the researched mixtures. A non-equilibrium molecular dynamics (NEMD) simulation with enhanced heat exchange (eHEX) algorithm was applied to calculate the Soret coefficient at T = 303.15 T=303.15  K and P = 1.0 atm P=1.0\hspace{0.1667em}\text{atm} . An empirical correlation based on an acentric factor was proposed and its calculation coincides with the simulated results, which showed the validity of the NEMD simulation. It is demonstrated that the isomer with higher acentric factor has a stronger thermophilic property and tends to migrate to the hot region in the heptane isomer mixture, and the extent of thermal diffusion is proportional to the difference between the acentric factors of the isomers.


Sign in / Sign up

Export Citation Format

Share Document