Water: Hydrogen bonding and vibrational spectroscopy, in the bulk liquid and at the liquid/vapor interface

2009 ◽  
Vol 470 (1-3) ◽  
pp. 13-20 ◽  
Author(s):  
B.M. Auer ◽  
J.L. Skinner
2016 ◽  
Vol 28 (10) ◽  
pp. 107105 ◽  
Author(s):  
Beatriz G. del Rio ◽  
David J. González ◽  
Luis E. González

2004 ◽  
Vol 84 (24) ◽  
pp. 4965-4967 ◽  
Author(s):  
Masahito Oh-e ◽  
Hiroshi Yokoyama ◽  
Steven Baldelli

2021 ◽  
Author(s):  
Suranjan Paul ◽  
John Herbert

Liquid microjet photoelectron spectroscopy is an increasingly common technique to measure vertical ionization energies (VIEs) of aqueous solutes, although the interpretation of these experiments is subject to questions regarding sensitivity to bulk versus interfacial solvation environments. Here, we compute aqueous-phase VIEs for a set of inorganic anions, some of which partition preferentially at the air/water interface, using a combination of molecular dynamics simulations and electronic structure calculations. The results are in excellent agreement with experiment, regardless of whether the simulation data are restricted to ions at the air/water interface or to those in bulk liquid water. Although the computed VIEs are sensitive to ion-water hydrogen bonding, we find that the short-range solvation structure is sufficiently similar in the bulk and interfacial environments that it proves impossible to discriminate between the two on the basis of the VIE, a conclusion that has important implications for the interpretation of liquid-phase photoelectron spectroscopy. More generally, analysis of the simulation data suggests that partitioning of soft anions at the air/water interface is largely a second (or third) solvation shell effect, arising from disruption of water-water hydrogen bonds and not from significant changes in first-shell anion-water hydrogen bonding. <br>


2021 ◽  
Author(s):  
Suranjan Paul ◽  
John Herbert

Liquid microjet photoelectron spectroscopy is an increasingly common technique to measure vertical ionization energies (VIEs) of aqueous solutes, although the interpretation of these experiments is subject to questions regarding sensitivity to bulk versus interfacial solvation environments. Here, we compute aqueous-phase VIEs for a set of inorganic anions, some of which partition preferentially at the air/water interface, using a combination of molecular dynamics simulations and electronic structure calculations. The results are in excellent agreement with experiment, regardless of whether the simulation data are restricted to ions at the air/water interface or to those in bulk liquid water. Although the computed VIEs are sensitive to ion-water hydrogen bonding, we find that the short-range solvation structure is sufficiently similar in the bulk and interfacial environments that it proves impossible to discriminate between the two on the basis of the VIE, a conclusion that has important implications for the interpretation of liquid-phase photoelectron spectroscopy. More generally, analysis of the simulation data suggests that partitioning of soft anions at the air/water interface is largely a second (or third) solvation shell effect, arising from disruption of water-water hydrogen bonds and not from significant changes in first-shell anion-water hydrogen bonding. <br>


1991 ◽  
Vol 6 (2) ◽  
pp. 298-302 ◽  
Author(s):  
L.M. Holzman ◽  
J.B. Adams ◽  
S.M. Foiles ◽  
W.N.G. Hitchon

The Embedded Atom Method (EAM) is used to compute density, internal energy, and structure factor for bulk liquids of the fcc metals at several temperatures above and below the melting temperature. The calculated values are found to be in generally good agreement with experiment, although the volume expansion upon melting does differ by up to 50% from the expected result for some of the elements studied. The total energy of a liquid system with surfaces is calculated, and the results are compared with the bulk liquid results to determine the enthalpy and thickness of the liquid-vapor interface. Also, the surface tension is found for Cu near the melting temperature. The EAM values for surface enthalpy and surface tension are found to be smaller than experimental values, which is consistent with results for EAM calculations of the surface energy of crystalline solids.


Sign in / Sign up

Export Citation Format

Share Document