sum frequency
Recently Published Documents


TOTAL DOCUMENTS

2981
(FIVE YEARS 414)

H-INDEX

100
(FIVE YEARS 10)

Friction ◽  
2022 ◽  
Author(s):  
Xianzhang Wang ◽  
Yuan Liu ◽  
Liran Ma ◽  
Xuefeng Xu ◽  
Yu Tian

AbstractSurfactants tend to adsorb on the surface/interface mostly in a directional manner. The alkyl chain orientation and conformation order for molecular monolayers of sodium dodecylbenzenesulfonate (SDBS) at low concentrations are studied by using the sum frequency generation vibrational spectroscopy (SFG-VS). The molecular arrangement of the surfactants adsorbed at the solid/liquid interface is further investigated. It is found that the arrangement of the SDBS at the interface becomes relatively ordered with increasing bulk concentration. Meanwhile, the orientation angle reduces gradually, and the molecules tend to be upright state. In addition, the effect of friction on the conformation order and orientation angle are also analyzed. The intensity of the SDBS vibrational contraction peak becomes lower after friction, which indicates that the anion has a reorientation process at the interface. The arrangement of molecules becomes more disordered due to friction. The orientation angle increases slightly, which indicates the monolayer has an inclined trend relative to the lateral direction on the interface. A modified adsorption model considering friction effect is proposed. This work may provide a reference for the further study of adsorption mechanism and application of surfactants.


Author(s):  
Randy Lemons ◽  
Nicole Neveu ◽  
Joseph Duris ◽  
Agostino Marinelli ◽  
Charles Durfee ◽  
...  

Author(s):  
Timo Stolt ◽  
Mikko J. Huttunen

Abstract Frequency conversion of light can be dramatically enhanced using high quality factor (Q-factor) cavities. Unfortunately, the achievable conversion efficiencies and conversion bandwidths are fundamentally limited by the time–bandwidth limit of the cavity, restricting their use in frequency conversion of ultrashort pulses. Here, we propose and numerically demonstrate sum-frequency generation based frequency conversion using a metasurface-based cavity configuration that could overcome this limitation. The proposed experimental configuration takes use of the spatially dispersive responses of periodic metasurfaces supporting collective surface lattice resonances (SLRs), and can be utilized for broadband frequency conversion of ultrashort pulses. We investigate a plasmonic metasurface, supporting a high-Q SLR (Q=500, linewidth of 2 nm) centred near 1000 nm, and demonstrate ~1000-fold enhancements of nonlinear signals. Furthermore, we demonstrate broadband frequency conversion with a pump conversion bandwidth reaching 75 nm, a value that greatly surpasses the linewidth of the studied cavity. Our work opens new avenues to utilize high-Q metasurfaces also for broadband frequency conversion of light.


2022 ◽  
Author(s):  
Kirill Grigoriev ◽  
Vladimir Makarov

Abstract Aiming to study the nonlinear response of the surface of isotropic chiral medium, we obtained analytical expression relating the transverse amplitudes of the spatial Fourier-spectra of two incident arbitrary polarized fundamental beams and one signal reflected beam at the sum-frequency within the first-order approximation by their divergence angles. The calculations, carried out in paraxial approximation, simultaneously take into account the spatial dispersion of the bulk of the medium, its near-surface heterogeneity and the transverse finiteness of the three interacting light beams with arbitrary amplitude profiles and orientation in space. A special compact form for the final formulas was found, which makes use of effective nonlinear transformation tensors, the components of which are solely determined by the geometry of incidence of the beams and the material constants of the medium. A possibility of ``switching off'' the certain mechanisms of nonlinear response by choosing the specific polarization states of the incident beams is discussed.


2021 ◽  
Author(s):  
Chun-Chieh Yu ◽  
Sho Imoto ◽  
Takakazu Seki ◽  
Kuo-Yang Chiang ◽  
Shumei Sun ◽  
...  

Many essential processes occur at soft interfaces, from chemical reactions on aqueous aerosols in the atmosphere to biochemical recognition and binding at the surface of cell membranes. The spatial arrangement of molecules specifically at these interfaces is crucial for many of such processes. The accurate determination of the interfacial molecular orientation has been challenging due to the low number of molecules at interfaces and the ambiguity of their orientational distribution. Here, we combine phase- and polarization-resolved sum-frequency generation spectroscopy to obtain the molecular orientation at the interface. We extend an exponentially decaying orientational distribution to multiple dimensions, which, in conjunction with multiple SFG data sets obtained from the different vibrational modes, allows us to determine molecular orientation. We apply this new approach to formic acid molecules at the air-water interface. The inferred orientation of formic acid agrees very well with ab initio molecular dynamics data. The phase-resolved SFG multimode analysis scheme using the multi-dimensional orientational distribution thus provides a universal approach for obtaining the interfacial molecular orientation.


Sign in / Sign up

Export Citation Format

Share Document