scholarly journals Probing Interfacial Effects on Ionization Energies: The Surprising Banality of Anion-Water Hydrogen Bonding at the Air/Water Interface

Author(s):  
Suranjan Paul ◽  
John Herbert

Liquid microjet photoelectron spectroscopy is an increasingly common technique to measure vertical ionization energies (VIEs) of aqueous solutes, although the interpretation of these experiments is subject to questions regarding sensitivity to bulk versus interfacial solvation environments. Here, we compute aqueous-phase VIEs for a set of inorganic anions, some of which partition preferentially at the air/water interface, using a combination of molecular dynamics simulations and electronic structure calculations. The results are in excellent agreement with experiment, regardless of whether the simulation data are restricted to ions at the air/water interface or to those in bulk liquid water. Although the computed VIEs are sensitive to ion-water hydrogen bonding, we find that the short-range solvation structure is sufficiently similar in the bulk and interfacial environments that it proves impossible to discriminate between the two on the basis of the VIE, a conclusion that has important implications for the interpretation of liquid-phase photoelectron spectroscopy. More generally, analysis of the simulation data suggests that partitioning of soft anions at the air/water interface is largely a second (or third) solvation shell effect, arising from disruption of water-water hydrogen bonds and not from significant changes in first-shell anion-water hydrogen bonding. <br>

2021 ◽  
Author(s):  
Suranjan Paul ◽  
John Herbert

Liquid microjet photoelectron spectroscopy is an increasingly common technique to measure vertical ionization energies (VIEs) of aqueous solutes, although the interpretation of these experiments is subject to questions regarding sensitivity to bulk versus interfacial solvation environments. Here, we compute aqueous-phase VIEs for a set of inorganic anions, some of which partition preferentially at the air/water interface, using a combination of molecular dynamics simulations and electronic structure calculations. The results are in excellent agreement with experiment, regardless of whether the simulation data are restricted to ions at the air/water interface or to those in bulk liquid water. Although the computed VIEs are sensitive to ion-water hydrogen bonding, we find that the short-range solvation structure is sufficiently similar in the bulk and interfacial environments that it proves impossible to discriminate between the two on the basis of the VIE, a conclusion that has important implications for the interpretation of liquid-phase photoelectron spectroscopy. More generally, analysis of the simulation data suggests that partitioning of soft anions at the air/water interface is largely a second (or third) solvation shell effect, arising from disruption of water-water hydrogen bonds and not from significant changes in first-shell anion-water hydrogen bonding. <br>


2011 ◽  
Vol 115 (23) ◽  
pp. 5873-5880 ◽  
Author(s):  
Abigail E. Miller ◽  
Poul B. Petersen ◽  
Christopher W. Hollars ◽  
Richard J. Saykally ◽  
Jan Heyda ◽  
...  

2014 ◽  
Vol 16 (46) ◽  
pp. 25573-25582 ◽  
Author(s):  
Mirza Galib ◽  
Gabriel Hanna

Ab initio molecular dynamics simulations of carbonic acid (H2CO3) at the air–water interface yield a lower dissociation barrier than in bulk water.


2020 ◽  
Vol 117 (22) ◽  
pp. 11908-11915 ◽  
Author(s):  
Joana Paulino ◽  
Myunggi Yi ◽  
Ivan Hung ◽  
Zhehong Gan ◽  
Xiaoling Wang ◽  
...  

Water wires are critical for the functioning of many membrane proteins, as in channels that conduct water, protons, and other ions. Here, in liquid crystalline lipid bilayers under symmetric environmental conditions, the selective hydrogen bonding interactions between eight waters comprising a water wire and a subset of 26 carbonyl oxygens lining the antiparallel dimeric gramicidin A channel are characterized by17O NMR spectroscopy at 35.2 T (or 1,500 MHz for1H) and computational studies. While backbone15N spectra clearly indicate structural symmetry between the two subunits, single site17O labels of the pore-lining carbonyls report two resonances, implying a break in dimer symmetry caused by the selective interactions with the water wire. The17O shifts document selective water hydrogen bonding with carbonyl oxygens that are stable on the millisecond timescale. Such interactions are supported by density functional theory calculations on snapshots taken from molecular dynamics simulations. Water hydrogen bonding in the pore is restricted to just three simultaneous interactions, unlike bulk water environs. The stability of the water wire orientation and its electric dipole leads to opposite charge-dipole interactions for K+ions bound at the two ends of the pore, thereby providing a simple explanation for an ∼20-fold difference in K+affinity between two binding sites that are ∼24 Å apart. The17O NMR spectroscopy reported here represents a breakthrough in high field NMR technology that will have applications throughout molecular biophysics, because of the acute sensitivity of the17O nucleus to its chemical environment.


2016 ◽  
Vol 18 (27) ◽  
pp. 18424-18430 ◽  
Author(s):  
Yujin Tong ◽  
Tobias Kampfrath ◽  
R. Kramer Campen

Vibrational sum frequency spectroscopy measurements reveal that the libration frequency of interfacial water is significantly higher than bulk liquid water, suggesting that water's rotational potential stiffens on moving from the bulk liquid to the air/water interface.


Sign in / Sign up

Export Citation Format

Share Document