scholarly journals Regressive Evolution in the Mexican Cave Tetra, Astyanax mexicanus

2007 ◽  
Vol 17 (5) ◽  
pp. 452-454 ◽  
Author(s):  
Meredith Protas ◽  
Melissa Conrad ◽  
Joshua B. Gross ◽  
Clifford Tabin ◽  
Richard Borowsky
2019 ◽  
Vol 11 (9) ◽  
pp. 2563-2573 ◽  
Author(s):  
Daniel Berning ◽  
Hannah Adams ◽  
Heidi Luc ◽  
Joshua B Gross

AbstractOrganisms living in the subterranean biome evolve extreme characteristics including vision loss and sensory expansion. Despite prior work linking certain genes to Mendelian traits, the genetic basis for complex cave-associated traits remains unknown. Moreover, it is unclear if certain forms of genetic variation (e.g., indels, copy number variants) are more common in regressive evolution. Progress in this area has been limited by a lack of suitable natural model systems and genomic resources. In recent years, the Mexican tetra, Astyanax mexicanus, has advanced as a model for cave biology and regressive evolution. Here, we present the results of a genome-wide screen for in-frame indels using alignments of RNA-sequencing reads to the draft cavefish genome. Mutations were discovered in three genes associated with blood physiology (mlf1, plg, and wdr1), two genes associated with growth factor signaling (ghrb, rnf126), one gene linked to collagen defects (mia3), and one gene which may have a global epigenetic impact on gene expression (mki67). With one exception, polymorphisms were shared between Pachón and Tinaja cavefish lineages, and different from the surface-dwelling lineage. We confirmed the presence of mutations using direct Sanger sequencing and discovered remarkably similar developmental expression in both morphs despite substantial coding sequence alterations. Further, three mutated genes mapped near previously established quantitative trait loci associated with jaw size, condition factor, lens size, and neuromast variation. This work reveals previously unappreciated traits evolving in this species under environmental pressures (e.g., blood physiology) and provides insight to genetic changes underlying convergence of organisms evolving in complete darkness.


2006 ◽  
Vol 52 (3-4) ◽  
pp. 405-422 ◽  
Author(s):  
William R. Jeffery

Many cave animals are colorless due to loss of pigment cells. Here, we review recent progress on how and why pigmentation has disappeared in Astyanax mexicanus, a single teleost species with conspecific surface-dwelling (surface fish) and many different cave-dwelling (cavefish) forms. During surface fish development, migratory neural crest cells form three types of pigment cells: silver iridophores, orange xanthophores, and black melanophores. Cavefish have eliminated or substantially reduced their complement of melanophores and exhibit albinism, loss of the capacity to synthesize melanin. Cell tracing, immunolocalization, and neural tube explant cultures show that cavefish have retained a colorless pre-melanophore (melanoblast) lineage derived from the neural crest. Thus, the cavefish neural crest produces melanoblasts that migrate normally but are blocked in differentiation and show defective melanogenesis. Cavefish melanoblasts can convert exogenous L-DOPA into melanin and therefore have active tyrosinase, the key enzyme in melanogenesis. In contrast, cavefish melanoblasts are unable to convert L-tyrosine to L-DOPA (and melanin), although this reaction is also catalyzed by tyrosinase. Thus, cavefish are tyrosinase-positive albinos that have a deficiency in L-tyrosine transport or utilization within the melanosome, the organelle in which melanin is synthesized. At least five different types of Astyanax cavefish show the same defect in melanogenesis. Genetic analysis shows that cavefish albinism is caused by loss of function mutations in a single gene, p/oca2, which encodes a large protein that probably spans the melanosome membrane. Different deletions in the p/oca2 protein-coding region are responsible for loss of function in at least two different cavefish populations, suggesting that albinism evolved by convergence. Based on current understanding of the genetic basis of albinism, we discuss potential mechanisms for regressive evolution of cavefish pigmentation.


2021 ◽  
Author(s):  
Boudjema Imarazene ◽  
Kang Du ◽  
Séverine Beille ◽  
Elodie Jouanno ◽  
Romain Feron ◽  
...  

2021 ◽  
Author(s):  
Erin K. Zess ◽  
Yasin F. Dagdas ◽  
Esme Peers ◽  
Abbas Maqbool ◽  
Mark J. Banfield ◽  
...  

AbstractIn order to infect a new host species, the pathogen must evolve to enhance infection and transmission in the novel environment. Although we often think of evolution as a process of accumulation, it is also a process of loss. Here, we document an example of regressive evolution in the Irish potato famine pathogen (Phytophthora infestans) lineage, providing evidence that a key sequence motif in the effector PexRD54 has degenerated following a host jump. We began by looking at PexRD54 and PexRD54-like sequences from across Phytophthora species. We found that PexRD54 emerged in the common ancestor of Phytophthora clade 1b and 1c species, and further sequence analysis showed that a key functional motif, the C-terminal ATG8-interacting motif (AIM), was also acquired at this point in the lineage. A closer analysis showed that the P. mirabilis PexRD54 (PmPexRD54) AIM appeared unusual, the otherwise-conserved central residue mutated from a glutamate to a lysine. We aimed to determine whether this PmPexRD54 AIM polymorphism represented an adaptation to the Mirabilis jalapa host environment. We began by characterizing the M. jalapa ATG8 family, finding that they have a unique evolutionary history compared to previously characterized ATG8s. Then, using co-immunoprecipitation and isothermal titration calorimetry assays, we showed that both full-length PmPexRD54 and the PmPexRD54 AIM peptide bind very weakly to the M. jalapa ATG8s. Through a combination of binding assays and structural modelling, we showed that the identity of the residue at the position of the PmPexRD54 AIM polymorphism can underpin high-affinity binding to plant ATG8s. Finally, we conclude that the functionality of the PexRD54 AIM was lost in the P. mirabilis lineage, perhaps owing to as-yet-unknown pressure on this effector in the new host environment.Author SummaryPathogens evolve in concert with their hosts. When a pathogen begins to infect a new host species, known as a “host jump,” the pathogen must evolve to enhance infection and transmission. These evolutionary processes can involve both the gain and loss of genes, as well as dynamic changes in protein function. Here, we describe an example of a pathogen protein that lost a key functional domain following a host jump, a salient example of “regressive evolution.” Specifically, we show that an effector protein from the plant pathogen Phytopthora mirabilis, a host-specific lineage closely related to the Irish potato famine pathogen Phytopthora infestans, has a derived amino acid polymorphism that results in a loss of interaction with certain host machinery.


Sign in / Sign up

Export Citation Format

Share Document