host environment
Recently Published Documents


TOTAL DOCUMENTS

311
(FIVE YEARS 49)

H-INDEX

37
(FIVE YEARS 1)

2022 ◽  
pp. 60-74
Author(s):  
Yuri Ezhkov ◽  
Rahmon Rahimov ◽  
Anvar Holiyorov ◽  
Ubaydullo Toshmetov

The Koshmansai ore field is located in the southern part of the granitoid Chatkal batholith, in its apical ledge and exocontact zones, in the Koshmansai river basin. The host environment of the granitoids is Lower Carboniferous carbonate rocks, which were primarily affected by intensive skarnification. Sedimentary-metamorphic and volcanics rocks and granitoids constitute the geological structure of the skarn rare-metal-polymetallic Koshmansai deposit. In the distribution of ore-forming and associated elе- ments in the mineral phases of skarn orebodies, their morphogenetic type plays a certain role. Thus, in bimetasomatic skarns, minerals accumulate more Cu, Zn, Ni, Te, Tl, Ge. In infiltration skarns, these are Ag, Pb, Bi, Cd, Sb, Co. Sulfide polymetallic mineralization in skarns is associated with quartz and calcite. The Koshmansai ore field has a distinct geochemical zoning, which can be subdivided into the Koshmansai rare- metal-polymetallic deposit at the upper levels of the ore field and the Nizhnekoshmansai rare-metal-copper ore occurrence at its lower levels. Nevertheless, orebodies formation proceeded in a similar thermodynamic environment, in the conditions of upper shielding at low temperature gradients, which makes it possible to consider the ore field as a single geochemical anomaly. The vertical geochemical zoning of ore-forming element halos determined by their concentration at the lower section levels of the Koshmansai deposit skarn orebodies suggests the expansion of its prospects in depth.



2022 ◽  
Vol 8 (1) ◽  
pp. 48
Author(s):  
Eefje Subroto ◽  
Jacq van Neer ◽  
Ivan Valdes ◽  
Hans de Cock

Biofilm formation during infections with the opportunistic pathogen Aspergillus fumigatus can be very problematic in clinical settings, since it provides the fungal cells with a protective environment. Resistance against drug treatments, immune recognition as well as adaptation to the host environment allows fungal survival in the host. The exact molecular mechanisms behind most processes in the formation of biofilms are unclear. In general, the formation of biofilms can be categorized roughly in a few stages; adhesion, conidial germination and development of hyphae, biofilm maturation and cell dispersion. Fungi in biofilms can adapt to the in-host environment. These adaptations can occur on a level of phenotypic plasticity via gene regulation. However, also more substantial genetic changes of the genome can result in increased resistance and adaptation in the host, enhancing the survival chances of fungi in biofilms. Most research has focused on the development of biofilms. However, to tackle developing microbial resistance and adaptation in biofilms, more insight in mechanisms behind genetic adaptations is required to predict which defense mechanisms can be expected. This can be helpful in the development of novel and more targeted antifungal treatments to combat fungal infections.



Author(s):  
Daphne Perlman ◽  
Marina Martínez-Álvaro ◽  
Sarah Moraïs ◽  
Ianina Altshuler ◽  
Live H. Hagen ◽  
...  

Animal microbiomes are occasionally considered as an extension of host anatomy, physiology, and even their genomic architecture. Their compositions encompass variable and constant portions when examined across multiple hosts. The latter, termed the core microbiome, is viewed as more accommodated to its host environment and suggested to benefit host fitness. Nevertheless, discrepancies in its definitions, characteristics, and importance to its hosts exist across studies. We survey studies that characterize the core microbiome, detail its current definitions and available methods to identify it, and emphasize the crucial need to upgrade and standardize the methodologies among studies. We highlight ruminants as a case study and discuss the link between the core microbiome and host physiology and genetics, as well as potential factors that shape it. We conclude with main directives of action to better understand the host–core microbiome axis and acquire the necessary insights into its controlled modulation. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.



2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Mayssa Gnaien ◽  
Aicha Kallel ◽  
Fatma Khalsi ◽  
Samia Hamouda ◽  
Hanen Smaoui ◽  
...  

Candida albicans colonizes the respiratory tract of patients with Cystic Fibrosis (CF). It competes with CF-associated pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, and contributes to disease severity. We serially recovered 160 C. albicans clinical isolates over a period of 30 months from the sputum of 23 pediatric and 2 adult antifungal-naive CF patients at Children’s Hospital Tunis and characterized the genotype and phenotype of a subset of strains using multilocus sequence typing (MLST) and growth assays on multiple stress-, filamentous growth- and biofilm-inducing media. Out of 16 patients regularly sampled for at least 9 months, 8 and 4 were chronically and transiently colonized with C. albicans, respectively. MLST analyses of 56 strains originating from 15 patients indicated that each patient was colonized with a single strain, while 8 patients (53%) carried isolates from clade 4 known to be enriched with strains from Middle East-Africa. A subset of these isolates with the same sequence type and colonizing 3 unrelated patients displayed altered susceptibility to cell wall-perturbing agents, suggesting changes in cell wall structure/function during growth in the CF lung. We also observed differential ability to filament and/or form biofilms in a set of identical isolates from clade 10 sampled over a period of 9 months in a pediatric CF patient, suggesting alterations in phenotypes associated with virulence. Our findings will rely on future whole-genome sequencing analyses to identify polymorphisms that could explain the emergence of new traits in C. albicans strains thriving in the CF host environment.



mSystems ◽  
2021 ◽  
Author(s):  
Scot P. Ouellette ◽  
Nathan D. Hatch ◽  
Nicholas A. Wood ◽  
Andrea L. Herrera ◽  
Michael S. Chaussee

Chlamydia trachomatis and Streptococcus pyogenes are important pathogens of humans. Interestingly, both are auxotrophic for tryptophan and acquire this essential amino acid from the host environment.



Author(s):  
Rabindra K. Mandal ◽  
Tieshan Jiang ◽  
Young Min Kwon

Salmonella enterica serotype Typhimurium is a major human bacterial pathogen that enters the food chain through meat animals asymptomatically carrying this pathogen. Despite the rich genome sequence data, a significant portion of Salmonella genes remain to be characterized for their potential contributions to virulence.



eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Kaylee M Wells ◽  
Kristina Kelley ◽  
Mary Baumel ◽  
Warren A Vieira ◽  
Catherine D McCusker

The mechanisms that regulate growth and size of the regenerating limb in tetrapods such as the Mexican axolotl are unknown. Upon the completion of the developmental stages of regeneration, when the regenerative organ known as the blastema completes patterning and differentiation, the limb regenerate is proportionally small in size. It then undergoes a phase of regeneration that we have called the 'tiny-limb' stage, that is defined by rapid growth until the regenerate reaches the proportionally appropriate size. In the current study we have characterized this growth and have found that signaling from the limb nerves is required for its maintenance. Using the regenerative assay known as the Accessory Limb Model, we have found that growth and size of the limb positively correlates with nerve abundance. We have additionally developed a new regenerative assay called the Neural Modified-ALM (NM-ALM), which decouples the source of the nerves from the regenerating host environment. Using the NM-ALM we discovered that non-neural extrinsic factors from differently sized host animals do not play a prominent role in determining the size of the regenerating limb. We have also discovered that the regulation of limb size is not autonomously regulated by the limb nerves. Together, these observations show that the limb nerves provide essential cues to regulate ontogenetic allometric growth and the final size of the regenerating limb.



2021 ◽  
Author(s):  
Lara Schmittmann ◽  
Ute U Hentschel

This protocol generates sponges (Halichondria panicea) with a disturbed microbiome under controlled experimental conditions, in order to study bacterial recolonization dynamics. Bacteria-bacteria interactions can be analysed with this set-up within the host environment aiming at a better understanding of sponge-microbe symbiosis in vivo. It is divided into the sections 1) preparation, 2) antibiotic treatment and recovery phase, 3) recolonization with the natural microbiome and 4) sampling.



2021 ◽  
Author(s):  
Erin K. Zess ◽  
Yasin F. Dagdas ◽  
Esme Peers ◽  
Abbas Maqbool ◽  
Mark J. Banfield ◽  
...  

AbstractIn order to infect a new host species, the pathogen must evolve to enhance infection and transmission in the novel environment. Although we often think of evolution as a process of accumulation, it is also a process of loss. Here, we document an example of regressive evolution in the Irish potato famine pathogen (Phytophthora infestans) lineage, providing evidence that a key sequence motif in the effector PexRD54 has degenerated following a host jump. We began by looking at PexRD54 and PexRD54-like sequences from across Phytophthora species. We found that PexRD54 emerged in the common ancestor of Phytophthora clade 1b and 1c species, and further sequence analysis showed that a key functional motif, the C-terminal ATG8-interacting motif (AIM), was also acquired at this point in the lineage. A closer analysis showed that the P. mirabilis PexRD54 (PmPexRD54) AIM appeared unusual, the otherwise-conserved central residue mutated from a glutamate to a lysine. We aimed to determine whether this PmPexRD54 AIM polymorphism represented an adaptation to the Mirabilis jalapa host environment. We began by characterizing the M. jalapa ATG8 family, finding that they have a unique evolutionary history compared to previously characterized ATG8s. Then, using co-immunoprecipitation and isothermal titration calorimetry assays, we showed that both full-length PmPexRD54 and the PmPexRD54 AIM peptide bind very weakly to the M. jalapa ATG8s. Through a combination of binding assays and structural modelling, we showed that the identity of the residue at the position of the PmPexRD54 AIM polymorphism can underpin high-affinity binding to plant ATG8s. Finally, we conclude that the functionality of the PexRD54 AIM was lost in the P. mirabilis lineage, perhaps owing to as-yet-unknown pressure on this effector in the new host environment.Author SummaryPathogens evolve in concert with their hosts. When a pathogen begins to infect a new host species, known as a “host jump,” the pathogen must evolve to enhance infection and transmission. These evolutionary processes can involve both the gain and loss of genes, as well as dynamic changes in protein function. Here, we describe an example of a pathogen protein that lost a key functional domain following a host jump, a salient example of “regressive evolution.” Specifically, we show that an effector protein from the plant pathogen Phytopthora mirabilis, a host-specific lineage closely related to the Irish potato famine pathogen Phytopthora infestans, has a derived amino acid polymorphism that results in a loss of interaction with certain host machinery.



Author(s):  
Kam Pou Ha ◽  
Andrew M. Edwards

Staphylococcus aureus is a common cause of both superficial and invasive infections of humans and animals. Despite a potent host response and apparently appropriate antibiotic therapy, staphylococcal infections frequently become chronic or recurrent, demonstrating a remarkable ability of S. aureus to withstand the hostile host environment.



Sign in / Sign up

Export Citation Format

Share Document