scholarly journals Olfactory and Neuromodulatory Signals Reverse Visual Object Avoidance to Approach in Drosophila

2019 ◽  
Vol 29 (12) ◽  
pp. 2058-2065.e2 ◽  
Author(s):  
Karen Y. Cheng ◽  
Rachel A. Colbath ◽  
Mark A. Frye
GeroPsych ◽  
2010 ◽  
Vol 23 (3) ◽  
pp. 169-175 ◽  
Author(s):  
Adrian Schwaninger ◽  
Diana Hardmeier ◽  
Judith Riegelnig ◽  
Mike Martin

In recent years, research on cognitive aging increasingly has focused on the cognitive development across middle adulthood. However, little is still known about the long-term effects of intensive job-specific training of fluid intellectual abilities. In this study we examined the effects of age- and job-specific practice of cognitive abilities on detection performance in airport security x-ray screening. In Experiment 1 (N = 308; 24–65 years), we examined performance in the X-ray Object Recognition Test (ORT), a speeded visual object recognition task in which participants have to find dangerous items in x-ray images of passenger bags; and in Experiment 2 (N = 155; 20–61 years) in an on-the-job object recognition test frequently used in baggage screening. Results from both experiments show high performance in older adults and significant negative age correlations that cannot be overcome by more years of job-specific experience. We discuss the implications of our findings for theories of lifespan cognitive development and training concepts.


2007 ◽  
Author(s):  
K. Suzanne Scherf ◽  
Marlene Behrmann ◽  
Kate Humphreys ◽  
Beatriz Luna

2013 ◽  
Vol 22 (3) ◽  
pp. 255-270 ◽  
Author(s):  
Yuki Ban ◽  
Takuji Narumi ◽  
Tomohiro Tanikawa ◽  
Michitaka Hirose

In this study, we aim to construct a perception-based shape display system to provide users with the sensation of touching virtual objects of varying shapes using only a simple mechanism. Thus far, we have proved that identified curved surface shapes or edge angles can be modified by displacing the visual representation of the user's hand. However, using this method, we cannot emulate multifinger touch, because of spatial unconformity. To solve this problem, we focus on modifying the identification of shapes using two fingers by deforming the visual representation of the user's hand. We devised a video see-through system that enables us to change the perceived shape of an object that a user is touching visually. The visual representation of the user's hand is deformed as if the user were handling a visual object; however, the user is actually handling an object of a different shape. Using this system, we conducted two experiments to investigate the effects of visuo-haptic interaction and evaluate its effectiveness. One is an investigation on the modification of size perception to confirm that the fingers did not stroke the shape but only touched it statically. The other is an investigation on the modification of shape perception for confirming that the fingers dynamically stroked the surface of the shape. The results of these experiments show that the perceived sizes of objects handled using a thumb and other finger(s) could be modified if the difference between the size of physical and visual stimuli was in the −40% to 35% range. In addition, we found that the algorithm can create an effect of shape perception modification when users stroke the shape with multiple fingers.


2011 ◽  
Vol 18 (4) ◽  
pp. 713-721 ◽  
Author(s):  
Alec Scharff ◽  
John Palmer ◽  
Cathleen M. Moore

Sign in / Sign up

Export Citation Format

Share Document