single neuron activity
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 22)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Bradly Thomas Stone ◽  
Jian-You Lin ◽  
Abuzar Mahmood ◽  
Alden Joshua Sanford ◽  
Donald Katz

Gustatory Cortex (GC), a structure deeply involved in the making of consumption decisions, presumably performs this function by integrating information about taste, experiences, and internal states related to the animal’s health, such as illness. Here, we investigated this assertion, examining whether illness is represented in GC activity, and how this representation impacts taste responses and behavior. We recorded GC single-neuron activity and local field potentials (LFP) from healthy rats and (the same) rats made ill ( via LiCl injection). We show (consistent with the extant literature) that the onset of illness-related behaviors arises contemporaneously with alterations in spontaneous 7-12Hz LFP power at ~11 min following injection. This process was accompanied by reductions in single-neuron taste response magnitudes and discriminability, and with enhancements in palatability-relatedness – a result reflecting the collapse of responses toward a simple “good-bad” code arising in a specific subset of GC neurons. Overall, our data show that a state (illness) that profoundly reduces consumption changes basic properties of the sensory cortical response to tastes, in a manner that can easily explain illness’ impact on consumption.


eNeuro ◽  
2021 ◽  
pp. ENEURO.0398-21.2021
Author(s):  
Runnan Cao ◽  
Alexander Todorov ◽  
Nicholas Brandmeir ◽  
Shuo Wang

2021 ◽  
Author(s):  
Samuel Garcia ◽  
Alessio Buccino ◽  
Pierre Yger

Recently, a new generation of devices have been developed to record neural activity simultaneously from hundreds of electrodes with a very high spatial density, both for in vitro and in vivo applications. While these advances enable to record from many more cells, they also dramatically increase the amount overlapping "synchronous" spikes (colliding in space and/or in time), challenging the already complicated process of spike sorting (i.e. extracting isolated single-neuron activity from extracellular signals). In this work, we used synthetic ground-truth recordings to quantitatively benchmark the performance of state-of-the-art spike sorters focusing specifically on spike collisions. Our results show that while modern template-matching based algorithms are more accurate than density-based approaches, all methods, to some extent, failed to detect synchronous spike events of neurons with similar extracellular signals. Interestingly, the performance of the sorters is not largely affected by the the spiking activity in the recordings, with respect to average firing rates and spike-train correlation levels.


2021 ◽  
Author(s):  
Matthew Ryan Krause ◽  
Pedro Gabrielle Vieira ◽  
Jean-Philippe Thivierge ◽  
Christopher C Pack

Transcranial alternating current stimulation (tACS) is a promising but controversial method for modulating neural activity noninvasively. Much of the controversy revolves around the question of whether tACS can generate electric fields that are strong enough to entrain neuronal spiking activity. Here we show that what matters is not the electric field strength per se, but rather the strength of the stimulation relative to ongoing oscillatory entrainment. We recorded from single neurons in the cortex and subcortex of behaving non-human primates, while applying tACS at different frequencies and amplitudes. When neuronal activity was weakly locked to ongoing oscillations, tACS readily entrained single-neuron activity to specific stimulation phases. In contrast, neurons that were strongly locked to ongoing oscillations usually exhibited decreased entrainment during low-amplitude tACS. As this reduced entrainment is a property of many oscillating systems, attempts to impose an external rhythm on spiking activity may often yield precisely the opposite effect.


2021 ◽  
Author(s):  
Barbara Feulner ◽  
Matthew G. Perich ◽  
Raeed H. Chowdhury ◽  
Lee E. Miller ◽  
Juan Álvaro Gallego ◽  
...  

Animals can rapidly adapt their movements to external perturbations. This adaptation is paralleled by changes in single neuron activity in the motor cortices. Behavioural and neural recording studies suggest that when animals learn to counteract a visuomotor perturbation, these changes originate from altered inputs to the motor cortices rather than from changes in local connectivity, as neural covariance is largely preserved during adaptation. Since measuring synaptic changes in vivo remains very challenging, we used a modular recurrent network model to compare the expected neural activity changes following learning through altered inputs (Hinput) and learning through local connectivity changes (Hlocal). Learning under Hinput produced small changes in neural activity and largely preserved the neural covariance, in good agreement with neural recordings in monkeys. Surprisingly given the presumed dependence of stable neural covariance on preserved circuit connectivity, Hlocal led to only slightly larger changes in neural activity and covariance compared to Hinput. This similarity is due to Hlocal only requiring small, correlated connectivity changes to counteract the perturbation, which provided the network with significant robustness against simulated synaptic noise. Simulations of tasks that impose increasingly larger behavioural changes revealed a growing difference between Hinput and Hlocal, which could be exploited when designing future experiments.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yehuda Roth

Each neuron in the central nervous system has many dendrites, which provide input information through impulses. Assuming that a neuron's decision to continue or stop firing is made by rules applied to the dendrites' inputs, we associate neuron activity with a quantum like-cellular automaton (QLCA) concepts. Following a previous study that related the CA description with entangled states, we provide a quantum-like description of neuron activity. After reviewing and presenting the entanglement concept expressed by QLCA terminology, we propose a model that relates quantum-like measurement to consciousness. Then, we present a toy model that reviews the QLCA theory, which is adapted to our terminology. The study also focuses on implementing QLCA formalism to describe a single neuron activity.


2021 ◽  
Vol 11 (3) ◽  
pp. 364 ◽  
Author(s):  
Marlene Derner ◽  
Leila Chaieb ◽  
Gert Dehnen ◽  
Thomas P. Reber ◽  
Valeri Borger ◽  
...  

Auditory beats are amplitude-modulated signals (monaural beats) or signals that subjectively cause the perception of an amplitude modulation (binaural beats). We investigated the effects of monaural and binaural 5 Hz beat stimulation on neural activity and memory performance in neurosurgical patients performing an associative recognition task. Previously, we had reported that these beat stimulation conditions modulated memory performance in opposite directions. Here, we analyzed data from a patient subgroup, in which microwires were implanted in the amygdala, hippocampus, entorhinal cortex and parahippocampal cortex. We identified neurons responding with firing rate changes to binaural versus monaural 5 Hz beat stimulation. In these neurons, we correlated the differences in firing rates for binaural versus monaural beats to the memory-related differences for remembered versus forgotten items and associations. In the left hemisphere, we detected statistically significant negative correlations between firing rate differences for binaural versus monaural beats and remembered versus forgotten items/associations. Importantly, such negative correlations were also observed between beat stimulation-related firing rate differences in the pre-stimulus window and memory-related firing rate differences in the post-stimulus windows. In line with concepts of homeostatic plasticity, our findings suggest that beat stimulation is linked to memory performance via shifting baseline firing levels.


2021 ◽  
Vol 17 (3) ◽  
pp. e1008773
Author(s):  
Annika Hagemann ◽  
Jens Wilting ◽  
Bita Samimizad ◽  
Florian Mormann ◽  
Viola Priesemann

Epileptic seizures are characterized by abnormal and excessive neural activity, where cortical network dynamics seem to become unstable. However, most of the time, during seizure-free periods, cortex of epilepsy patients shows perfectly stable dynamics. This raises the question of how recurring instability can arise in the light of this stable default state. In this work, we examine two potential scenarios of seizure generation: (i) epileptic cortical areas might generally operate closer to instability, which would make epilepsy patients generally more susceptible to seizures, or (ii) epileptic cortical areas might drift systematically towards instability before seizure onset. We analyzed single-unit spike recordings from both the epileptogenic (focal) and the nonfocal cortical hemispheres of 20 epilepsy patients. We quantified the distance to instability in the framework of criticality, using a novel estimator, which enables an unbiased inference from a small set of recorded neurons. Surprisingly, we found no evidence for either scenario: Neither did focal areas generally operate closer to instability, nor were seizures preceded by a drift towards instability. In fact, our results from both pre-seizure and seizure-free intervals suggest that despite epilepsy, human cortex operates in the stable, slightly subcritical regime, just like cortex of other healthy mammalians.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Yunshu Fan ◽  
Joshua I Gold ◽  
Long Ding

Many decisions require trade-offs between sensory evidence and internal preferences. Potential neural substrates include the frontal eye field (FEF) and caudate nucleus, but their distinct roles are not understood. Previously we showed that monkeys’ decisions on a direction-discrimination task with asymmetric rewards reflected a biased accumulate-to-bound decision process (Fan et al., 2018) that was affected by caudate microstimulation (Doi et al., 2020). Here we compared single-neuron activity in FEF and caudate to each other and to accumulate-to-bound model predictions derived from behavior. Task-dependent neural modulations were similar in both regions. However, choice-selective neurons in FEF, but not caudate, encoded behaviorally derived biases in the accumulation process. Baseline activity in both regions was sensitive to reward context, but this sensitivity was not reliably associated with behavioral biases. These results imply distinct contributions of FEF and caudate neurons to reward-biased decision-making and put experimental constraints on the neural implementation of accumulation-to-bound-like computations.


NeuroImage ◽  
2020 ◽  
Vol 221 ◽  
pp. 117214
Author(s):  
M. Derner ◽  
G. Dehnen ◽  
L. Chaieb ◽  
T.P. Reber ◽  
V. Borger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document