scholarly journals Novel genetic associations with interferon in systemic lupus erythematosus identified by replication and fine-mapping of trait-stratified genome-wide screen

Cytokine ◽  
2020 ◽  
Vol 132 ◽  
pp. 154631 ◽  
Author(s):  
Yogita Ghodke-Puranik ◽  
Molly Imgruet ◽  
Jessica M. Dorschner ◽  
Prakriti Shrestha ◽  
Kaci McCoy ◽  
...  
2018 ◽  
Vol 77 (7) ◽  
pp. 1078-1084 ◽  
Author(s):  
Yong-Fei Wang ◽  
Yan Zhang ◽  
Zhengwei Zhu ◽  
Ting-You Wang ◽  
David L Morris ◽  
...  

ObjectivesSystemic lupus erythematosus (SLE) is a prototype autoimmune disease with a strong genetic component in its pathogenesis. Through genome-wide association studies (GWAS), we recently identified 10 novel loci associated with SLE and uncovered a number of suggestive loci requiring further validation. This study aimed to validate those loci in independent cohorts and evaluate the role of SLE genetics in drug repositioning.MethodsWe conducted GWAS and replication studies involving 12 280 SLE cases and 18 828 controls, and performed fine-mapping analyses to identify likely causal variants within the newly identified loci. We further scanned drug target databases to evaluate the role of SLE genetics in drug repositioning.ResultsWe identified three novel loci that surpassed genome-wide significance, including ST3AGL4 (rs13238909, pmeta=4.40E-08), MFHAS1 (rs2428, pmeta=1.17E-08) and CSNK2A2 (rs2731783, pmeta=1.08E-09). We also confirmed the association of CD226 locus with SLE (rs763361, pmeta=2.45E-08). Fine-mapping and functional analyses indicated that the putative causal variants in CSNK2A2 locus reside in an enhancer and are associated with expression of CSNK2A2 in B-lymphocytes, suggesting a potential mechanism of association. In addition, we demonstrated that SLE risk genes were more likely to be interacting proteins with targets of approved SLE drugs (OR=2.41, p=1.50E-03) which supports the role of genetic studies to repurpose drugs approved for other diseases for the treatment of SLE.ConclusionThis study identified three novel loci associated with SLE and demonstrated the role of SLE GWAS findings in drug repositioning.


2014 ◽  
Vol 74 (3) ◽  
pp. e14-e14 ◽  
Author(s):  
Nina Y Oparina ◽  
Angelica M Delgado-Vega ◽  
Manuel Martinez-Bueno ◽  
César Magro-Checa ◽  
Concepción Fernández ◽  
...  

2020 ◽  
pp. annrheumdis-2020-219209
Author(s):  
Xianyong Yin ◽  
Kwangwoo Kim ◽  
Hiroyuki Suetsugu ◽  
So-Young Bang ◽  
Leilei Wen ◽  
...  

ObjectiveSystemic lupus erythematosus (SLE), an autoimmune disorder, has been associated with nearly 100 susceptibility loci. Nevertheless, these loci only partially explain SLE heritability and their putative causal variants are rarely prioritised, which make challenging to elucidate disease biology. To detect new SLE loci and causal variants, we performed the largest genome-wide meta-analysis for SLE in East Asian populations.MethodsWe newly genotyped 10 029 SLE cases and 180 167 controls and subsequently meta-analysed them jointly with 3348 SLE cases and 14 826 controls from published studies in East Asians. We further applied a Bayesian statistical approach to localise the putative causal variants for SLE associations.ResultsWe identified 113 genetic regions including 46 novel loci at genome-wide significance (p<5×10−8). Conditional analysis detected 233 association signals within these loci, which suggest widespread allelic heterogeneity. We detected genome-wide associations at six new missense variants. Bayesian statistical fine-mapping analysis prioritised the putative causal variants to a small set of variants (95% credible set size ≤10) for 28 association signals. We identified 110 putative causal variants with posterior probabilities ≥0.1 for 57 SLE loci, among which we prioritised 10 most likely putative causal variants (posterior probability ≥0.8). Linkage disequilibrium score regression detected genetic correlations for SLE with albumin/globulin ratio (rg=−0.242) and non-albumin protein (rg=0.238).ConclusionThis study reiterates the power of large-scale genome-wide meta-analysis for novel genetic discovery. These findings shed light on genetic and biological understandings of SLE.


2020 ◽  
Vol 72 (11) ◽  
pp. 1863-1871
Author(s):  
Jing Cui ◽  
Soumya Raychaudhuri ◽  
Elizabeth W. Karlson ◽  
Cameron Speyer ◽  
Susan Malspeis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document