A simple algorithm for secure domination in proper interval graphs

2019 ◽  
Vol 260 ◽  
pp. 289-293 ◽  
Author(s):  
Y.H. Zou ◽  
J.J. Liu ◽  
C.C. Hsu ◽  
Y.L. Wang
2018 ◽  
Vol 247 ◽  
pp. 70-76 ◽  
Author(s):  
Toru Araki ◽  
Hiroka Miyazaki

1964 ◽  
Vol 16 ◽  
pp. 539-548 ◽  
Author(s):  
P. C. Gilmore ◽  
A. J. Hoffman

Let < be a non-reflexive partial ordering defined on a set P. Let G(P, <) be the undirected graph whose vertices are the elements of P, and whose edges (a, b) connect vertices for which either a < b or b < a. A graph G with vertices P for which there exists a partial ordering < such that G = G(P, <) is called a comparability graph.In §2 we state and prove a characterization of those graphs, finite or infinite, which are comparability graphs. Another proof of the same characterization has been given in (2), and a related question examined in (6). Our proof of the sufficiency of the characterization yields a very simple algorithm for directing all the edges of a comparability graph in such a way that the resulting graph partially orders its vertices.


2018 ◽  
Author(s):  
Darren Whitaker ◽  
Kevin Hayes

Raman Spectroscopy is a widely used analytical technique, favoured when molecular specificity with minimal sample preparation is required.<br>The majority of Raman instruments use charge-coupled device (CCD) detectors, these are susceptible to cosmic rays and as such multiple spurious spikes can occur in the measurement. These spikes are problematic as they may hinder subsequent analysis, particularly if multivariate data analysis is required. In this work we present a new algorithm to remove these spikes from spectra after acquisition. Specifically we use calculation of modified <i>Z</i> scores to locate spikes followed by a simple moving average filter to remove them. The algorithm is very simple and its execution is essentially instantaneous, resulting in spike-free spectra with minimal distortion of actual Raman data. The presented algorithm represents an improvement on existing spike removal methods by utilising simple, easy to understand mathematical concepts, making it ideal for experts and non-experts alike. <br>


2018 ◽  
Author(s):  
Darren Whitaker ◽  
Kevin Hayes

Raman Spectroscopy is a widely used analytical technique, favoured when molecular specificity with minimal sample preparation is required.<br>The majority of Raman instruments use charge-coupled device (CCD) detectors, these are susceptible to cosmic rays and as such multiple spurious spikes can occur in the measurement. These spikes are problematic as they may hinder subsequent analysis, particularly if multivariate data analysis is required. In this work we present a new algorithm to remove these spikes from spectra after acquisition. Specifically we use calculation of modified <i>Z</i> scores to locate spikes followed by a simple moving average filter to remove them. The algorithm is very simple and its execution is essentially instantaneous, resulting in spike-free spectra with minimal distortion of actual Raman data. The presented algorithm represents an improvement on existing spike removal methods by utilising simple, easy to understand mathematical concepts, making it ideal for experts and non-experts alike. <br>


2018 ◽  
Author(s):  
Darren Whitaker ◽  
Kevin Hayes

Raman Spectroscopy is a widely used analytical technique, favoured when molecular specificity with minimal sample preparation is required.<br>The majority of Raman instruments use charge-coupled device (CCD) detectors, these are susceptible to cosmic rays and as such multiple spurious spikes can occur in the measurement. These spikes are problematic as they may hinder subsequent analysis, particularly if multivariate data analysis is required. In this work we present a new algorithm to remove these spikes from spectra after acquisition. Specifically we use calculation of modified <i>Z</i> scores to locate spikes followed by a simple moving average filter to remove them. The algorithm is very simple and its execution is essentially instantaneous, resulting in spike-free spectra with minimal distortion of actual Raman data. The presented algorithm represents an improvement on existing spike removal methods by utilising simple, easy to understand mathematical concepts, making it ideal for experts and non-experts alike. <br>


Author(s):  
P. Roushini Leely Pushpam ◽  
Suseendran Chitra

2008 ◽  
Vol 98 (4) ◽  
pp. 812-834 ◽  
Author(s):  
Maria Chudnovsky ◽  
Paul Seymour
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document