scholarly journals Regular graphs with equal matching number and independence number

2022 ◽  
Vol 310 ◽  
pp. 86-90
Author(s):  
Zixuan Yang ◽  
Hongliang Lu
2021 ◽  
Vol vol. 23, no. 3 (Graph Theory) ◽  
Author(s):  
Stijn Cambie

In this paper, we prove a collection of results on graphical indices. We determine the extremal graphs attaining the maximal generalized Wiener index (e.g. the hyper-Wiener index) among all graphs with given matching number or independence number. This generalizes some work of Dankelmann, as well as some work of Chung. We also show alternative proofs for two recents results on maximizing the Wiener index and external Wiener index by deriving it from earlier results. We end with proving two conjectures. We prove that the maximum for the difference of the Wiener index and the eccentricity is attained by the path if the order $n$ is at least $9$ and that the maximum weighted Szeged index of graphs of given order is attained by the balanced complete bipartite graphs.


10.37236/7272 ◽  
2019 ◽  
Vol 26 (1) ◽  
Author(s):  
József Balogh ◽  
Alexandr Kostochka ◽  
Xujun Liu

Let $i(r,g)$ denote the infimum of the ratio $\frac{\alpha(G)}{|V(G)|}$ over the $r$-regular graphs of girth at least $g$, where $\alpha(G)$ is the independence number of $G$, and  let $i(r,\infty) := \lim\limits_{g \to \infty} i(r,g)$. Recently, several new lower bounds of $i(3,\infty)$ were obtained. In particular, Hoppen and Wormald showed in 2015 that $i(3, \infty) \geqslant 0.4375,$ and Csóka improved it to $i(3,\infty) \geqslant 0.44533$ in 2016. Bollobás proved the upper bound  $i(3,\infty) < \frac{6}{13}$  in 1981, and McKay improved it to $i(3,\infty) < 0.45537$in 1987. There were no improvements since then. In this paper, we improve the upper bound to $i(3,\infty) \leqslant 0.454.$


Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 49
Author(s):  
Eman AbuHijleh ◽  
Mohammad Abudayah ◽  
Omar Alomari ◽  
Hasan Al-Ezeh

Graph invariants are the properties of graphs that do not change under graph isomorphisms, the independent set decision problem, vertex covering problem, and matching number problem are known to be NP-Hard, and hence it is not believed that there are efficient algorithms for solving them. In this paper, the graph invariants matching number, vertex covering number, and independence number for the zero-divisor graph over the rings Z p k and Z p k q r are determined in terms of the sets S p i and S p i q j respectively. Accordingly, a formula in terms of p , q , k , and r, with n = p k , n = p k q r is provided.


10.37236/7469 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Marlo Eugster ◽  
Frank Mousset

In 1995, Erdös and Gyárfás proved that in every $2$-colouring of the edges of $K_n$, there is a vertex cover by $2\sqrt{n}$ monochromatic paths of the same colour, which is optimal up to a constant factor. The main goal of this paper is to study the natural multi-colour generalization of this problem: given two positive integers $r,s$, what is the smallest number $pc_{r,s}(K_n)$ such that in every colouring of the edges of $K_n$ with $r$ colours, there exists a vertex cover of $K_n$ by $pc_{r,s}(K_n)$ monochromatic paths using altogether at most $s$ different colours?For fixed integers $r>s$ and as $n\to\infty$, we prove that $pc_{r,s}(K_n) = \Theta(n^{1/\chi})$, where $\chi=\max{\{1,2+2s-r\}}$ is the chromatic number of the Kneser graph $KG(r,r-s)$. More generally, if one replaces $K_n$ by an arbitrary $n$-vertex graph with fixed independence number $\alpha$, then we have $pc_{r,s}(G) = O(n^{1/\chi})$, where this time around $\chi$ is the chromatic number of the Kneser hypergraph $KG^{(\alpha+1)}(r,r-s)$. This result is tight in the sense that there exist graphs with independence number $\alpha$ for which $pc_{r,s}(G) = \Omega(n^{1/\chi})$. This is in sharp contrast to the case $r=s$, where it follows from a result of Sárközy (2012) that $pc_{r,r}(G)$ depends only on $r$ and $\alpha$, but not on the number of vertices.We obtain similar results for the situation where instead of using paths, one wants to cover a graph with bounded independence number by monochromatic cycles, or a complete graph by monochromatic $d$-regular graphs.


2015 ◽  
Vol 92 (2) ◽  
pp. 177-186 ◽  
Author(s):  
MINGQIANG AN ◽  
LIMING XIONG

The classical first and second Zagreb indices of a graph $G$ are defined as $M_{1}(G)=\sum _{v\in V(G)}d(v)^{2}$ and $M_{2}(G)=\sum _{e=uv\in E(G)}d(u)d(v),$ where $d(v)$ is the degree of the vertex $v$ of $G.$ Recently, Furtula et al. [‘On difference of Zagreb indices’, Discrete Appl. Math.178 (2014), 83–88] studied the difference of $M_{1}$ and $M_{2},$ and showed that this difference is closely related to the vertex-degree-based invariant $RM_{2}(G)=\sum _{e=uv\in E(G)}[d(u)-1][d(v)-1]$, the reduced second Zagreb index. In this paper, we present sharp bounds for the reduced second Zagreb index, given the matching number, independence number and vertex connectivity, and we also completely determine the extremal graphs.


2013 ◽  
Vol 17 (1) ◽  
pp. 275-585
Author(s):  
Erfang Shan ◽  
Liying Kang ◽  
Dingguo Wang

10.37236/656 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Jonathan Cutler ◽  
A. J. Radcliffe

The study of the number of independent sets in a graph has a rich history. Recently, Kahn proved that disjoint unions of $K_{r,r}$'s have the maximum number of independent sets amongst $r$-regular bipartite graphs. Zhao extended this to all $r$-regular graphs. If we instead restrict the class of graphs to those on a fixed number of vertices and edges, then the Kruskal-Katona theorem implies that the graph with the maximum number of independent sets is the lex graph, where edges form an initial segment of the lexicographic ordering. In this paper, we study three related questions. Firstly, we prove that the lex graph has the maximum number of weighted independent sets for any appropriate weighting. Secondly, we solve the problem of maximizing the number of independents sets in graphs with specified independence number or clique number. Finally, for $m\leq n$, we find the graphs with the minimum number of independent sets for graphs with $n$ vertices and $m$ edges.


Sign in / Sign up

Export Citation Format

Share Document