kneser graph
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 1)

10.37236/9903 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Luciano N. Grippo ◽  
Adrián Pastine ◽  
Pablo Torres ◽  
Mario Valencia-Pabon ◽  
Juan C. Vera

This paper considers an infection spreading in a graph; a vertex gets infected if at least two of its neighbors are infected. The $P_3$-hull number is the minimum size of a vertex set that eventually infects the whole graph. In the specific case of the Kneser graph $K(n,k)$, with $n\ge 2k+1$, an infection spreading on the family of $k$-sets of an $n$-set is considered. A set is infected whenever two sets disjoint from it are infected. We compute the exact value of the $P_3$-hull number of $K(n,k)$ for $n>2k+1$. For $n = 2k+1$, using graph homomorphisms from the Knesser graph to the Hypercube, we give lower and upper bounds.


10.37236/9295 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Pawel Wocjan ◽  
Clive Elphick ◽  
Parisa Darbari

Hoffman proved that a graph $G$ with eigenvalues $\mu_1 \geqslant \cdots \geqslant \mu_n$ and chromatic number $\chi(G)$ satisfies: \[\chi \geqslant 1 + \kappa\] where $\kappa$ is the smallest integer such that \[\mu_1 + \sum_{i=1}^{\kappa} \mu_{n+1-i} \leqslant 0.\] We strengthen this well known result by proving that $\chi(G)$ can be replaced by the quantum chromatic number, $\chi_q(G)$, where for all graphs $\chi_q(G) \leqslant \chi(G)$ and for some graphs $\chi_q(G)$ is significantly smaller than $\chi(G)$. We also prove a similar result, and investigate implications of these inequalities for the quantum chromatic number of various classes of graphs, which improves many known results. For example, we demonstrate that the Kneser graph $KG_{p,2}$ has $\chi_q = \chi = p - 2$.


Author(s):  
Gülnaz Boruzanlı Ekinci ◽  
John Baptist Gauci

The study of connectivity parameters forms an integral part of the research conducted in establishing the fault tolerance of networks. A number of variations on the classical notion of connectivity have been proposed and studied. In particular, the super--connectivity asks for the minimum number of vertices that need to be deleted from a graph in order to disconnect the graph without creating isolated vertices. In this work, we determine this value for two closely related families of graphs which are considered as good models for networks, namely the odd graphs and their Kronecker double cover. The odd graphs are constructed by taking all possible subsets of size $k$ from the set of integers $\{1,\ldots,2k+1\}$ as vertices, and defining two vertices to be adjacent if the corresponding $k$-subsets are disjoint; these correspond to the Kneser graphs $KG(2k+1,k)$. The Kronecker double cover of a graph $G$ is formed by taking the Kronecker product of $G$ with the complete graph on two vertices; in the case when $G$ is $KG(2k+1,k)$, the Kronecker double cover is the bipartite Kneser graph $H(2k+1,k)$. We show that in both instances, the super--connectivity is equal to $2k$.


2020 ◽  
Vol 343 (1) ◽  
pp. 111630
Author(s):  
Jeong-Hyun Kang ◽  
Hemanshu Kaul

2019 ◽  
Vol 29 (1) ◽  
pp. 1-21
Author(s):  
Meysam Alishahi ◽  
Hajiabolhassan Hossein

AbstractIn an earlier paper, the present authors (2015) introduced the altermatic number of graphs and used Tucker’s lemma, an equivalent combinatorial version of the Borsuk–Ulam theorem, to prove that the altermatic number is a lower bound for chromatic number. A matching Kneser graph is a graph whose vertex set consists of all matchings of a specified size in a host graph and two vertices are adjacent if their corresponding matchings are edge-disjoint. Some well-known families of graphs such as Kneser graphs, Schrijver graphs and permutation graphs can be represented by matching Kneser graphs. In this paper, unifying and generalizing some earlier works by Lovász (1978) and Schrijver (1978), we determine the chromatic number of a large family of matching Kneser graphs by specifying their altermatic number. In particular, we determine the chromatic number of these matching Kneser graphs in terms of the generalized Turán number of matchings.


10.37236/8130 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Dániel Gerbner ◽  
Abhishek Methuku ◽  
Dániel T. Nagy ◽  
Balazs Patkos ◽  
Máté Vizer

The vertex set of the Kneser graph $K(n,k)$ is $V = \binom{[n]}{k}$ and two vertices are adjacent if the corresponding sets are disjoint. For any graph $F$, the largest size of a vertex set $U \subseteq V$ such that $K(n,k)[U]$ is $F$-free, was recently determined by Alishahi and Taherkhani, whenever $n$ is large enough compared to $k$ and $F$. In this paper, we determine the second largest size of a vertex set $W \subseteq V$ such that $K(n,k)[W]$ is $F$-free, in the case when $F$ is an even cycle or a complete multi-partite graph. In the latter case, we actually give a more general theorem depending on the chromatic number of $F$. 


10.37236/7907 ◽  
2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Ferdinand Ihringer

We obtain a new weak Hilton-Milner type result for intersecting families of $k$-spaces in $\mathbb{F}_q^{2k}$, which improves several known results. In particular the chromatic number of the $q$-Kneser graph $qK_{n:k}$ was previously known for $n > 2k$ (except for $n=2k+1$ and $q=2$) or $k < q \log q - q$. Our result determines the chromatic number of $qK_{2k:k}$ for $q \geqslant 5$, so that the only remaining open cases are $(n, k) = (2k, k)$ with $q \in \{ 2, 3, 4 \}$ and $(n, k) = (2k+1, k)$ with $q = 2$.


10.37236/6493 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Ron Aharoni ◽  
Daniel Soltész

Motivated by a question on the maximal number of vertex disjoint Schrijver graphs in the Kneser graph, we investigate the following function, denoted by $f(n,k)$: the maximal number of Hamiltonian cycles on an $n$ element set, such that no two cycles share a common independent set of size more than $k$. We shall mainly be interested in the behavior of $f(n,k)$ when $k$ is a linear function of $n$, namely $k=cn$. We show a threshold phenomenon: there exists a constant $c_t$ such that for $c<c_t$, $f(n,cn)$ is bounded by a constant depending only on $c$ and not on $n$, and for $c_t <c$, $f(n,cn)$ is exponentially large in $n ~(n \to \infty)$. We prove that $0.26 < c_t < 0.36$, but the exact value of $c_t$ is not determined. For the lower bound we prove a technical lemma, which for graphs that are the union of two Hamiltonian cycles establishes a relation between the independence number and the number of $K_4$ subgraphs. A corollary of this lemma is that if a graph $G$ on $n>12$ vertices is the union of  two Hamiltonian cycles and $\alpha(G)=n/4$, then $V(G)$ can be covered by vertex-disjoint $K_4$ subgraphs.


Sign in / Sign up

Export Citation Format

Share Document