scholarly journals A linear time algorithm to list the minimal separators of chordal graphs

2006 ◽  
Vol 306 (3) ◽  
pp. 351-358 ◽  
Author(s):  
L. Sunil Chandran ◽  
Fabrizio Grandoni
2015 ◽  
Vol 07 (02) ◽  
pp. 1550020 ◽  
Author(s):  
B. S. Panda ◽  
D. Pradhan

A set D ⊆ V is a restrained dominating set of a graph G = (V, E) if every vertex in V\D is adjacent to a vertex in D and a vertex in V\D. Given a graph G and a positive integer k, the restrained domination problem is to check whether G has a restrained dominating set of size at most k. The restrained domination problem is known to be NP-complete even for chordal graphs. In this paper, we propose a linear time algorithm to compute a minimum restrained dominating set of a proper interval graph. We present a polynomial time reduction that proves the NP-completeness of the restrained domination problem for undirected path graphs, chordal bipartite graphs, circle graphs, and planar graphs.


2020 ◽  
Author(s):  
Julio Araujo ◽  
Alexandre Cezar ◽  
Carlos Vinícius Gomes Costa Lima ◽  
Vinicius Fernandes Dos Santos ◽  
Ana Shirley Ferreira Silva

An orientation D of a graph G = (V, E) is a digraph obtained from G by replacing each edge by exactly one of the two possible arcs with the same end vertices. For each v ∈ V(G), the indegree of v in D, denoted by dD−(v), is the number of arcs with head v in D. An orientation D of G is proper if dD−(u) ≠ dD−(v), for all uv ∈ E(G). An orientation with maximum indegree at most k is called a k-orientation. The proper orientation number of G, denoted by χ→(G), is the minimum integer k such that G admits a proper k-orientation. We prove that determining whether χ→(G) ≤ k is NP-complete for chordal graphs of bounded diameter. We also present a tight upper bound for χ→(G) on split graphs and a linear-time algorithm for quasi-threshold graphs.


1992 ◽  
Vol 44 (1) ◽  
pp. 45-49 ◽  
Author(s):  
N.Ch. Veeraraghavulu ◽  
P. Sreenivasa Kumar ◽  
C.E. Veni Madhavan

Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 293
Author(s):  
Xinyue Liu ◽  
Huiqin Jiang ◽  
Pu Wu ◽  
Zehui Shao

For a simple graph G=(V,E) with no isolated vertices, a total Roman {3}-dominating function(TR3DF) on G is a function f:V(G)→{0,1,2,3} having the property that (i) ∑w∈N(v)f(w)≥3 if f(v)=0; (ii) ∑w∈N(v)f(w)≥2 if f(v)=1; and (iii) every vertex v with f(v)≠0 has a neighbor u with f(u)≠0 for every vertex v∈V(G). The weight of a TR3DF f is the sum f(V)=∑v∈V(G)f(v) and the minimum weight of a total Roman {3}-dominating function on G is called the total Roman {3}-domination number denoted by γt{R3}(G). In this paper, we show that the total Roman {3}-domination problem is NP-complete for planar graphs and chordal bipartite graphs. Finally, we present a linear-time algorithm to compute the value of γt{R3} for trees.


1976 ◽  
Author(s):  
A. K. Jones ◽  
R. J. Lipton ◽  
L. Snyder

Sign in / Sign up

Export Citation Format

Share Document