scholarly journals A Motzkin filter in the Tamari lattice

2015 ◽  
Vol 338 (8) ◽  
pp. 1370-1378
Author(s):  
Jean-Luc Baril ◽  
Jean-Marcel Pallo
Keyword(s):  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Wenjie Fang ◽  
Henri Mühle ◽  
Jean-Christophe Novelli

In this article we define an encoding for parabolic permutations that distinguishes between parabolic $231$-avoiding permutations. We prove that the componentwise order on these codes realizes the parabolic Tamari lattice, and conclude a direct and simple proof that the parabolic Tamari lattice is isomorphic to a certain $\nu$-Tamari lattice, with an explicit bijection. Furthermore, we prove that this bijection is closely related to the map $\Theta$ used when the lattice isomorphism was first proved in (Ceballos, Fang and Mühle, 2020), settling an open problem therein.


10.37236/7698 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Viviane Pons
Keyword(s):  

We describe an involution on Tamari intervals and $m$-Tamari intervals. This involution switches two sets of statistics known as the "rises" and the "contacts" and so proves an open conjecture from Préville-Ratelle on intervals of the $m$-Tamari lattice.


Order ◽  
2013 ◽  
Vol 31 (3) ◽  
pp. 337-363 ◽  
Author(s):  
Sebastian A. Csar ◽  
Rik Sengupta ◽  
Warut Suksompong
Keyword(s):  

Author(s):  
Henri Mühle

AbstractOrdering permutations by containment of inversion sets yields a fascinating partial order on the symmetric group: the weak order. This partial order is, among other things, a semidistributive lattice. As a consequence, every permutation has a canonical representation as a join of other permutations. Combinatorially, these canonical join representations can be modeled in terms of arc diagrams. Moreover, these arc diagrams also serve as a model to understand quotient lattices of the weak order. A particularly well-behaved quotient lattice of the weak order is the well-known Tamari lattice, which appears in many seemingly unrelated areas of mathematics. The arc diagrams representing the members of the Tamari lattices are better known as noncrossing partitions. Recently, the Tamari lattices were generalized to parabolic quotients of the symmetric group. In this article, we undertake a structural investigation of these parabolic Tamari lattices, and explain how modified arc diagrams aid the understanding of these lattices.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Henri Mühle ◽  
Nathan Williams

International audience We present a generalization of the Tamari lattice to parabolic quotients of the symmetric group. More precisely, we generalize the notions of 231-avoiding permutations, noncrossing set partitions, and nonnesting set partitions to parabolic quotients, and show bijectively that these sets are equinumerous. Furthermore, the restriction of weak order on the parabolic quotient to the parabolic 231-avoiding permutations is a lattice quotient. Lastly, we suggest how to extend these constructions to all Coxeter groups. Nous présentons une généralisation du treillis de Tamari aux quotients paraboliques du groupe symétrique. Plus précisément, nous généralisons les notions de permutations qui évitent le motif 231, les partitions non-croisées, et les partitions non-emboîtées aux quotients paraboliques, et nous montrons de façon bijective que ces ensembles sont équipotents. En restreignant l’ordre faible du quotient parabolique aux permutations paraboliques qui évitent le motif 231, on obtient un quotient de treillis d’ordre faible. Enfin, nous suggérons comment étendre ces constructions à tous les groupes de Coxeter.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Samuele Giraudo

International audience We show that the set of balanced binary trees is closed by interval in the Tamari lattice. We establish that the intervals $[T_0, T_1]$ where $T_0$ and $T_1$ are balanced trees are isomorphic as posets to a hypercube. We introduce tree patterns and synchronous grammars to get a functional equation of the generating series enumerating balanced tree intervals. Nous montrons que l'ensemble des arbres équilibrés est clos par intervalle dans le treillis de Tamari. Nous caractérisons la forme des intervalles du type $[T_0, T_1]$ où $T_0$ et $T_1$ sont équilibrés en montrant qu'en tant qu'ensembles partiellement ordonnés, ils sont isomorphes à un hypercube. Nous introduisons la notion de motif d'arbre et de grammaire synchrone dans le but d'établir une équation fonctionnelle de la série génératrice qui dénombre les intervalles d'arbres équilibrés.


Sign in / Sign up

Export Citation Format

Share Document