tree patterns
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 13)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
Luyining Gan ◽  
Wei Gao ◽  
Jie Han
Keyword(s):  

2021 ◽  
Vol 21 (2) ◽  
pp. 77
Author(s):  
Pradifta Gilang Ramdhan ◽  
Kosala D. Purnomo ◽  
Firdaus Ubaidillah

Fractal tree is simply a trunk and a number of branches, each of which looks like the tree itself. The fractal tree can be generated using the IFS and L-Systems methods. In this article, the author develops fractal tree generation using L-Systems with additional variations. The variations given are in thickness, length, and branch angle. This development is expected to produce more diverse fractal tree patterns. In generating a fractal tree using L-Systems, it begins by determining the letters and symbols to be used. Then determine which axioms should be used. Then the production rules are made together with the determination of the parametric L-Systems. And the last is to determine the probability value for the stochastic L-Systems. In the deterministic L-Systems, thickness variations, length variations, and branch angle variations are carried out. In the variation of branch thickness, if the ratio of the thickness of the left branch is greater than that of the right branch, the fractal tree is skewed to the left. Then in the variation of branch length if the ratio of the length of the left branch is smaller than the ratio of the length of the right branch, the length of the left branch is longer than the length of the right branch. Then at the angle of the branching the smaller the 𝜃 that is included causes the branches to be closer together. The use of stochastic L-Systems can produce more diverse fractal tree patterns, even though they use the same production rules and parameter values


2021 ◽  
Author(s):  
Tracy J. Lee ◽  
Yu-Ching Liu ◽  
Wei-An Liu ◽  
Yu-Fei Lin ◽  
Hsin-Han Lee ◽  
...  

AbstractThe ecology and genetic diversity of model yeast Saccharomyces cerevisiae prior to human domestication remain poorly understood. Taiwan is regarded as part of this yeast’s geographic birthplace where the most divergent natural lineage was discovered. Here, we deep sampled the broad-leaf forests across this continental island to probe the ancestral species diversity. We found that S. cerevisiae is distributed ubiquitously at low abundance in the forests. Whole-genome sequencing of 121 isolates revealed nine distinct lineages, the highest known in any region. Three lineages are endemic to Taiwan and six are widespread in Asia. Molecular dating placed the divergence of the Taiwanese and Asian lineages during the Pleistocene, when a transient continental shelf land bridge connected Taiwan to other major landmasses. Extensive historical and recent admixture events were detected between natural lineages. In particular, the genetic component from a lineage associated with fruits that spanned the widest geographical range was present in most admixed isolates. Collectively, Taiwanese isolates harbor genetic diversity comparable to that of the whole Asia continent, and different lineages have coexisted at a fine spatial scale even on the same tree. Patterns of variations within each lineage revealed that S. cerevisiae is highly clonal and predominantly reproduces asexually in nature. We detected prevalent purifying selection genome-wide, with lineage-specific signals of positive or directional selection independent between lineages. This study establishes that S. cerevisiae has rich natural diversity sheltered from human influences, making it a powerful model system in microbial ecology.


Author(s):  
Elizabeth Chou ◽  
Yin-Chen Hsieh ◽  
Sabrina Enriquez ◽  
Fushing Hsieh
Keyword(s):  

Ecosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Sean M. Sultaire ◽  
Andrew J. Kroll ◽  
Jake Verschuyl ◽  
Douglas A. Landis ◽  
Gary J. Roloff

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Insaf Hani ◽  
Malika Rached-Kanouni ◽  
Ammar Menasri

The spatial pattern of species is one of the key studied parameters in ecology so as to better understand the ecological processes and the functioning of forest ecosystems. This paper describes the classification of structural indices measuring the alpha diversity and examines typical representatives of the classification groups such as the Shannon’s index, aggregation index by Clark and Evans, the mingling index, the diameter differentiation index and the coefficient of segregation by Pielou. The tree inventory made it possible to count 7 species that are divided into six (06) families. Only Pinus halepensis Mill. trees were taken into account via calculation in spatial distribution. Western exposure shows the most regular tree patterns (1.6±0.1) according to the aggregation index by Clark and Evans, while the species mingling index for south- and east-facing stands indicates segregation of Pinus halepensis Mill. groups. The diameter differentiation index for the majority of the studied stands is assumed through estimated values within the range that starts from 0.4 to 0.9 for the four exposures. The distribution shows that western and eastern exposures belong to the fourth class of differentiation (very large differentiation), which means that the trees with the smallest DBH have less than 30% of the size of the neighbouring trees since the diameter differentiation index for the two exposures is 0.9±0.05 and 0.7±0.2.


2021 ◽  
Vol 8 (1) ◽  
pp. 202200
Author(s):  
P. Villegas ◽  
A. Cavagna ◽  
M. Cencini ◽  
H. Fort ◽  
T. S. Grigera

Inferring the processes underlying the emergence of observed patterns is a key challenge in theoretical ecology. Much effort has been made in the past decades to collect extensive and detailed information about the spatial distribution of tropical rainforests, as demonstrated, e.g. in the 50 ha tropical forest plot on Barro Colorado Island, Panama. These kinds of plots have been crucial to shed light on diverse qualitative features, emerging both at the single-species or the community level, like the spatial aggregation or clustering at short scales. Here, we build on the progress made in the study of the density correlation functions applied to biological systems, focusing on the importance of accurately defining the borders of the set of trees, and removing the induced biases. We also pinpoint the importance of combining the study of correlations with the scale dependence of fluctuations in density, which are linked to the well-known empirical Taylor’s power law. Density correlations and fluctuations, in conjunction, provide a unique opportunity to interpret the behaviours and, possibly, to allow comparisons between data and models. We also study such quantities in models of spatial patterns and, in particular, we find that a spatially explicit neutral model generates patterns with many qualitative features in common with the empirical ones.


Author(s):  
Yap Kian Lim ◽  
Mohammed Parvez Anwar ◽  
Jaganathan Jayaprakash ◽  
Wael Elleithy ◽  
Teck Leong Lau ◽  
...  

2020 ◽  
Vol 10 (18) ◽  
pp. 6209
Author(s):  
Hee-Geun Yoon ◽  
Seyoung Park ◽  
Seong-Bae Park

This paper proposes a simple knowledge base enrichment based on parse tree patterns with a semantic filter. Parse tree patterns are superior to lexical patterns used commonly in many previous studies in that they can manage long distance dependencies among words. In addition, the proposed semantic filter, which is a combination of WordNet-based similarity and word embedding similarity, removes parse tree patterns that are semantically irrelevant to the meaning of a target relation. According to our experiments using the DBpedia ontology and Wikipedia corpus, the average accuracy of the top 100 parse tree patterns for ten relations is 68%, which is 16% higher than that of lexical patterns, and the average accuracy of the newly extracted triples is 60.1%. These results prove that the proposed method produces more relevant patterns for the relations of seed knowledge, and thus more accurate triples are generated by the patterns.


Sign in / Sign up

Export Citation Format

Share Document