scholarly journals New bounds for chromatic polynomials and chromatic roots

2015 ◽  
Vol 338 (11) ◽  
pp. 1938-1946 ◽  
Author(s):  
Jason Brown ◽  
Aysel Erey
2018 ◽  
Vol 27 (6) ◽  
pp. 988-998 ◽  
Author(s):  
THOMAS J. PERRETT ◽  
CARSTEN THOMASSEN

We prove that the roots of the chromatic polynomials of planar graphs are dense in the interval between 32/27 and 4, except possibly in a small interval around τ + 2 where τ is the golden ratio. This interval arises due to a classical result of Tutte, which states that the chromatic polynomial of every planar graph takes a positive value at τ + 2. Our results lead us to conjecture that τ + 2 is the only such number less than 4.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Adam Bohn

International audience A chromatic root is a zero of the chromatic polynomial of a graph. At a Newton Institute workshop on Combinatorics and Statistical Mechanics in 2008, two conjectures were proposed on the subject of which algebraic integers can be chromatic roots, known as the ``$α +n$ conjecture'' and the ``$nα$ conjecture''. These say, respectively, that given any algebraic integer α there is a natural number $n$ such that $α +n$ is a chromatic root, and that any positive integer multiple of a chromatic root is also a chromatic root. By computing the chromatic polynomials of two large families of graphs, we prove the $α +n$ conjecture for quadratic and cubic integers, and show that the set of chromatic roots satisfying the nα conjecture is dense in the complex plane. Une racine chromatique est un zéro du polynôme chromatique d'un graphe. A un atelier au Newton Institute sur la combinatoire et la mécanique statistique en 2008, deux conjectures ont été proposées dont le sujet des entiers algébriques peut être racines chromatiques, connus sous le nom ``la conjecture $α + n$'' et ``la conjecture $n α$ ''. Les conjectures veulent dire, respectivement, que pour chaque entier algébrique $α$ il y a un nombre entier naturel $n$, tel que $α + n$ est une racine chromatique, et que chaque multiple entier positif d'une racine chromatique est aussi une racine chromatique . En calculant les polynômes chromatiques de deux grandes familles de graphes, on prouve la conjecture $α + n$ pour les entiers quadratiques et cubiques, et montre que l'ensemble des racines chromatiques qui confirme la conjecture $nα$ est dense dans le plan complexe.


10.37236/4412 ◽  
2014 ◽  
Vol 21 (4) ◽  
Author(s):  
Dae Hyun Kim ◽  
Alexander H. Mun ◽  
Mohamed Omar

Given a group $G$ of automorphisms of a graph $\Gamma$, the orbital chromatic polynomial $OP_{\Gamma,G}(x)$ is the polynomial whose value at a positive integer $k$ is the number of orbits of $G$ on proper $k$-colorings of $\Gamma.$ Cameron and Kayibi introduced this polynomial as a means of understanding roots of chromatic polynomials. In this light, they posed a problem asking whether the real roots of the orbital chromatic polynomial of any graph are bounded above by the largest real root of its chromatic polynomial. We resolve this problem in a resounding negative by not only constructing a counterexample, but by providing a process for generating families of counterexamples. We additionally begin the program of finding classes of graphs whose orbital chromatic polynomials have real roots bounded above by the largest real root of their chromatic polynomials; in particular establishing this for many outerplanar graphs.


1976 ◽  
Vol 20 (1) ◽  
pp. 5-19 ◽  
Author(s):  
N.L Biggs ◽  
G.H.J Meredith

2013 ◽  
Vol 31 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Matthias Beck ◽  
Daniel Blado ◽  
Joseph Crawford ◽  
Taïna Jean-Louis ◽  
Michael Young

1980 ◽  
Vol 29 (2) ◽  
pp. 161-167 ◽  
Author(s):  
E.J. Farrell
Keyword(s):  

2019 ◽  
Vol 7 (2) ◽  
pp. 217-224
Author(s):  
Noureddine Chikh ◽  
◽  
Miloud Mihoubi ◽  

10.37236/6578 ◽  
2017 ◽  
Vol 24 (1) ◽  
Author(s):  
Peter J. Cameron ◽  
Kerri Morgan

A chromatic root is a root of the chromatic polynomial of a graph.  Any chromatic root is an algebraic integer. Much is known about the location of chromatic roots in the real and complex numbers, but rather less about their properties as algebraic numbers. This question was the subject of a seminar at the Isaac Newton Institute in late 2008.  The purpose of this paper is to report on the seminar and subsequent developments.We conjecture that, for every algebraic integer $\alpha$, there is a natural number n such that $\alpha+n$ is a chromatic root. This is proved for quadratic integers; an extension to cubic integers has been found by Adam Bohn. The idea is to consider certain special classes of graphs for which the chromatic polynomial is a product of linear factors and one "interesting" factor of larger degree. We also report computational results on the Galois groups of irreducible factors of the chromatic polynomial for some special graphs. Finally, extensions to the Tutte polynomial are mentioned briefly.


Sign in / Sign up

Export Citation Format

Share Document