In vitro to in vivo extrapolation of intrinsic clearance for low turnover compounds using plated pooled donor human hepatocyte co-culture systems

2019 ◽  
Vol 34 (1) ◽  
pp. S52
Author(s):  
Faraz Kazmi ◽  
Carlo Sensenhauser ◽  
Shannon Dallas
10.29007/t4kv ◽  
2020 ◽  
Author(s):  
Lopamudra Dutta ◽  
Preethi Krishnan ◽  
Andrew Smith ◽  
Ryan Kennedy ◽  
Glen Ropella ◽  
...  

An improved understanding of in vivo ⇔ in vitro changes is crucial in identifying and mitigating factors contributing to in vitro–in vivo extrapolation (IVIVE) inaccuracies in predicting the hepatic clearance of substances. We argue that a model mechanism-based virtual culture (vCulture) ⇔ virtual mouse (vMouse) (or vRat or vHuman) experiment approach can identify factors contributing to IVIVE disconnects. Doing so depends on having evidence that six Translational Requirements have been achieved. We cite evidence that the first four have been achieved. The fifth Requirement is that differences in measures of vCompound disposition between vCulture and vMouse are attributable solely to the micro-architectural, physiomimetic features, and uncertainties built into the vLiver and vMouse but are absent from the vCulture. The objective of this work is to first improve on a vCulture architecture used previously and then use results of virtual experiments to verify that its use enables the fifth Translational Requirement to be achieved. We employ two different idealized vCompounds, which map to highly permeable real compounds at the extreme ends of the intrinsic clearance spectrum. Virtual intrinsic clearance = Exposure rate per vHPC. At quasi-steady state, results for vCompound-1 are independent of the dosing rate. The average per-vHPC Exposure rates (taken over the whole vLiver in vMouse experiments) are the same (within the variance of the Experiments) as those in vCulture. However, they are location dependent within the vLiver. For vCompound-2, there are dosing rate differences and average per-vHPC Exposure rates within the vLiver are also location dependent. When we account for dosing rate differences, we see again that average per-vHPC Exposure rates averaged over the whole vLiver in vMouse experiments are the same as those in vCulture. Thus, the differences in per vHPC Exposure rate within the vLiver for both vCompounds are attributable solely to the micro-architectural and physiomimetic features built into the vLiver and vMouse but are absent from the vCulture. The results verify that the fifth Translational Requirement has been achieved.


2021 ◽  
Vol 34 (4) ◽  
pp. 1175-1182
Author(s):  
Luise Henneberger ◽  
Julia Huchthausen ◽  
Niklas Wojtysiak ◽  
Beate I. Escher

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Laurence Finot ◽  
Eric Chanat ◽  
Frederic Dessauge

AbstractIn vivo study of tissue or organ biology in mammals is very complex and progress is slowed by poor accessibility of samples and ethical concerns. Fortunately, however, advances in stem cell identification and culture have made it possible to derive in vitro 3D “tissues” called organoids, these three-dimensional structures partly or fully mimicking the in vivo functioning of organs. The mammary gland produces milk, the source of nutrition for newborn mammals. Milk is synthesized and secreted by the differentiated polarized mammary epithelial cells of the gland. Reconstructing in vitro a mammary-like structure mimicking the functional tissue represents a major challenge in mammary gland biology, especially for farm animals for which specific agronomic questions arise. This would greatly facilitate the study of mammary gland development, milk secretion processes and pathological effects of viral or bacterial infections at the cellular level, all with the objective of improving milk production at the animal level. With this aim, various 3D cell culture models have been developed such as mammospheres and, more recently, efforts to develop organoids in vitro have been considerable. Researchers are now starting to draw inspiration from other fields, such as bioengineering, to generate organoids that would be more physiologically relevant. In this chapter, we will discuss 3D cell culture systems as organoids and their relevance for agronomic research.


Biology ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Palaniselvam Kuppusamy ◽  
Dahye Kim ◽  
Ilavenil Soundharrajan ◽  
Inho Hwang ◽  
Ki Choon Choi

A co-culture system allows researchers to investigate the complex interactions between two cell types under various environments, such as those that promote differentiation and growth as well as those that mimic healthy and diseased states, in vitro. In this paper, we review the most common co-culture systems for myocytes and adipocytes. The in vitro techniques mimic the in vivo environment and are used to investigate the causal relationships between different cell lines. Here, we briefly discuss mono-culture and co-culture cell systems and their applicability to the study of communication between two or more cell types, including adipocytes and myocytes. Also, we provide details about the different types of co-culture systems and their applicability to the study of metabolic disease, drug development, and the role of secretory factors in cell signaling cascades. Therefore, this review provides details about the co-culture systems used to study the complex interactions between adipose and muscle cells in various environments, such as those that promote cell differentiation and growth and those used for drug development.


Author(s):  
Xiangli Zhang ◽  
Qin Shen ◽  
Yi Wang ◽  
Leilei Zhou ◽  
Qi Weng ◽  
...  

Background: E2 (Camptothecin - 20 (S) - O- glycine - deoxycholic acid), and G2 (Camptothecin - 20 (S) - O - acetate - deoxycholic acid) are two novel bile acid-derived camptothecin analogues by introducing deoxycholic acid in 20-position of CPT(camptothecin) with greater anticancer activity and lower systematic toxicity in vivo. Objective: We aimed to investigate the metabolism of E2 and G2 by Rat Liver Microsomes (RLM). Methods: Phase Ⅰ and Phase Ⅱ metabolism of E2 and G2 in rat liver microsomes were performed respectively, and the mixed incubation of phase I and phase Ⅱ metabolism of E2 and G2 was also processed. Metabolites were identified by liquid chromatographic/mass spectrometry. Results: The results showed that phase I metabolism was the major biotransformation route for both E2 and G2. The isoenzyme involved in their metabolism had some difference. The intrinsic clearance of G2 was 174.7mL/min. mg protein, more than three times of that of E2 (51.3 mL/min . mg protein), indicating a greater metabolism stability of E2. 10 metabolites of E2 and 14 metabolites of G2 were detected, including phase I metabolites (mainly via hydroxylations and hydrolysis) and their further glucuronidation products. Conclusion: These findings suggested that E2 and G2 have similar biotransformation pathways except some difference in the hydrolysis ability of the ester bond and amino bond from the parent compounds, which may result in the diversity of their metabolism stability and responsible CYPs(Cytochrome P450 proteins).


Sign in / Sign up

Export Citation Format

Share Document