Low complexity receiver design for time-varying Poisson molecular communication channels with memory

2021 ◽  
pp. 103187
Author(s):  
Fardad Vakilipoor ◽  
Francesca Ratti ◽  
Hamdan Awan ◽  
Maurizio Magarini
2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Gang Zhang ◽  
Deqiang Cheng ◽  
Qiqi Kou

This paper investigates a low-complexity saturated control law for a class of nonlinear systems with consideration of the time-varying output constraint, control constraint, and external disturbance. First, a dead-zone model is employed to transform the control saturation nonlinearity into a linear one with respect to the real input signal. Then, the original system with time-varying output constraint is transformed into a constraint-free one, based on which a novel adaptive saturated control law is devised along the filtered error manifold. By employing minimum learning parameter technique and virtual error concept, only two adaptive parameters are needed to update online, which reduces the computational burdens dramatically. Finally, the applications to Duffing-Holmes chaotic system are organized to validate the effectiveness of the proposed control law.


Sign in / Sign up

Export Citation Format

Share Document