molecular communication
Recently Published Documents


TOTAL DOCUMENTS

887
(FIVE YEARS 316)

H-INDEX

46
(FIVE YEARS 8)

Chemosensors ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Federico Calì ◽  
Luca Fichera ◽  
Nunzio Tuccitto

The effect of the communication channel size on the transport and subsequent detection of chemical messengers is investigated on millimetric and micrometric channels. The transport of the information carriers, being characterized by an advective and a diffusive contribution, was simulated by varying the flow velocity and the diffusion coefficient. Then, to evaluate the information quality, the Intersymbol Interference (ISI) between two consecutive signals at a specific release delay was estimated. This allowed us to verify that operating under micrometric channel conditions has a larger flow velocity range to obtain completely separated successive signals and smaller release delays can be used between signals. The theoretical results were confirmed by developing a prototype molecular communication platform operating under microfluidic conditions, which enables communication through fluorescent nanoparticles, namely Carbon Quantum Dots (CQDs).


Author(s):  
Federico Calì ◽  
Luca Fichera ◽  
Nunzio Tuccitto

The effect of the communication channel size on the transport and subsequent detection of chemical messengers is investigated on millimetric and micrometric channels. The transport of the information carriers, being characterized by an advective and a diffusive contribution, was simulated by varying the flow velocity and the diffusion coefficient. Then, to evaluate the information quality, the Intersymbol Interference (ISI) between two consecutive signals at a specific release delay was estimated. This allowed us to verify that operating under micrometric channel conditions has a larger flow velocity range to obtain completely separated successive signals and smaller release delays can be used between signals. The theoretical results were confirmed by developing a prototype molecular communication platform operating under microfluidic conditions, which enables communication through fluorescent nanoparticles, namely Carbon Quantum Dots (CQDs).


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
A. R. Junejo ◽  
Mohammed K. A. Kaabar ◽  
Xiang Li

Developing new treatments for emerging infectious diseases in infectious and noninfectious diseases has attracted a particular attention. The emergence of viral diseases is expected to accelerate; these data indicate the need for a proactive approach to develop widely active family specific and cross family therapies for future disease outbreaks. Viral disease such as pneumonia, severe acute respiratory syndrome type 2, HIV infection, and Hepatitis-C virus can cause directly and indirectly cardiovascular disease (CVD). Emphasis should be placed not only on the development of broad-spectrum molecules and antibodies but also on host factor therapy, including the reutilization of previously approved or developing drugs. Another new class of therapeutics with great antiviral therapeutic potential is molecular communication networks using deep learning autoencoder (DL-AEs). The use of DL-AEs for diagnosis and prognosis prediction of infectious and noninfectious diseases has attracted a particular attention. MCN is map to molecular signaling and communication that are found inside and outside the human body where the goal is to develop a new black box mechanism that can serve the future robust healthcare industry (HCI). MCN has the ability to characterize the signaling process between cells and infectious disease locations at various levels of the human body called point-to-point MCN through DL-AE and provide targeted drug delivery (TDD) environment. Through MCN, and DL-AE healthcare provider can remotely measure biological signals and control certain processes in the required organism for the maintenance of the patient’s health state. We use biomicrodevices to promote the real-time monitoring of human health and storage of the gathered data in the cloud. In this paper, we use the DL-based AE approach to design and implement a new drug source and target for the MCN under white Gaussian noise. Simulation results show that transceiver executions for a given medium model that reduces the bit error rate which can be learned. Then, next development of molecular diagnosis such as heart sounds is classified. Furthermore, biohealth interface for the inside and outside human body mechanism is presented, comparative perspective with up-to-date current situation about MCN.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Xuening Liao ◽  
Zhen Jia ◽  
Zhenqiang Wu ◽  
Bo Liu ◽  
Xinlei Wang ◽  
...  

Molecular communication (MC), which allows nanomachines to communicate with each other by using chemical molecules, is considered to be a promising method for communications in liquid environment. Available works on MC mainly focus on modulation and signal detection schemes for MC systems with fixed nanomachines, i.e., fixed molecular communication (FMC) systems. However, the more complex systems with mobile nanomachines (i.e., mobile molecular communication (MMC) systems) have been largely unexplored. This paper considers a MMC system with a fixed transmitter and a mobile receiver communicating over diffusive-drift channels of a limited boundary. We first propose a new modulation scheme to address the issue of misalignment in the signal detection of MMC systems by adopting three types of molecules in the signal modulation and modulating the transmitted signals into blocks with equal length to avoid the transferring of a signal error in the current block on the signal detection in other blocks. We then propose a new signal detection scheme of the MMC systems by calculating the distance between the transmitter and the receiver based on a distance prediction method and detecting signals at the receiver based on the decided adaptive concentration threshold in each time interval. To verify the efficiency of our proposed scheme, we then conducted extensive simulations by the Monte Carlo simulation, and comparisons are also made among our proposed schemes, a well-known fixed threshold signal detection scheme, the CATD scheme, the PAD scheme, and a low complexity signal detection scheme for MMC systems in terms of the BER (bit error rate). Results show that our proposed schemes can outperform these schemes regarding the BER.


2021 ◽  
Vol 2136 (1) ◽  
pp. 012039
Author(s):  
Shanchao Wen

Abstract In order to solve the problem of intercode interference (ISI) and background noise caused by molecular diffusion in molecular communication, Honda analyzed and studied four methods to resist ISI signal, and analyzed the characteristics of the received signal at the moment. A reliable incoherent molecular signal detection algorithm independent of channel impulse response (CIR) is proposed, and an adaptive threshold calculation method is designed, and the theoretical value of bit error rate (BER) is given. The simulation results show that the proposed scheme BER is lower than the traditional scheme BER under the same computational complexity, so it has a wide application prospect in the nanoscale molecular communication system with limited computing power.


2021 ◽  
Vol 7 (48) ◽  
Author(s):  
Saskia Groeer ◽  
Katja Schumann ◽  
Sebastian Loescher ◽  
Andreas Walther

Sign in / Sign up

Export Citation Format

Share Document