Long-term influence of hay-cutting on plant species richness, biodiversity and soil fertility in a Danish fen

2019 ◽  
Vol 134 ◽  
pp. 93-100 ◽  
Author(s):  
Kaj Sand-Jensen ◽  
Henrik Jørgensen ◽  
Jesper Ruf Larsen
2008 ◽  
Vol 84 (3-4) ◽  
pp. 200-211 ◽  
Author(s):  
Lotten J. Johansson ◽  
Karin Hall ◽  
Honor C. Prentice ◽  
Margareta Ihse ◽  
Triin Reitalu ◽  
...  

2020 ◽  
Author(s):  
Christine Fischer ◽  
Sophia Leimer ◽  
Christiane Roscher ◽  
Janneke Ravenek ◽  
Hans de Kroon ◽  
...  

<p>Soil moisture is the dynamic link between climate, soil and vegetation and the dynamics and variation are affected by several often interrelated factors such as soil texture, soil structural parameters (soil organic carbon) and vegetation parameters (e.g. belowground- and aboveground biomass). For the characterization of soil moisture, including its variability and the resulting water and matter fluxes, the knowledge of the relative importance of these factors is of major challenge. Because of the spatial heterogeneity of its drivers soil moisture varies strongly over time and space. Our objective was to assess the spatio-temporal variability of soil moisture and factors which could explain that variability, like soil properties and vegetation cover, in in a long term biodiversity experiment (Jena Experiment).</p><p>The Jena Experiment consist 86 plots on which plant species richness (0, 1, 2, 4, 8, 16, and 60) and functional groups (legumes, grasses, tall herbs, and small herbs) were manipulated in a factorial design Soil moisture measurements were performed weekly April to September 2003-2005 and 2008-2013 in 0.1, 0.2, 0.3, 0.4, and 0.6 m soil depth using Delta T theta probe.</p><p>The analysis showed that both plant species richness and the presence of particular functional groups affected soil water content, while functional group richness per se played no role. Plots containing grasses was consistently drier than average at the soil surface in all observed years while plots containing legumes comparatively moister, but only up to the year 2008.</p><p>Interestingly, plant species richness led to moister than average subsoil at the beginning of the experiment (2003 and 2004), which changed to lower than average up to the year 2010 in all depths.Shortly after establishment, increased topsoil water content was related to higher leaf area index in species‐rich plots, which enhanced shading. In later years, higher species richness increased topsoil organic carbon, likely improving soil aggregation. Improved aggregation, in turn, dried topsoils in species‐rich plots due to faster drainage of rainwater.</p><p>Our decade‐long experiment shows that besides abiotic factors like texture, soil water patterns are consistently affected by biotic factors such as species diversity and plant functional types, but also properties that originate from biotic-abiotic interactions such as soil structure. Especially the effect of plant species richness propagated to deeper soil layers 8 years after the establishment of the experiment, and while originally caused by shading it was later related to altered soil physical characteristics in addition to modification of water uptake depth. Functional groups affected soil water distribution, likely due to plant traits affecting root water uptake depths, shading, or water‐use efficiency. Our results highlight the role of vegetation composition for soil processes and emphasize the need for long-term experiments to discover diversity effects in slow reacting systems like soil.</p>


Oecologia ◽  
2021 ◽  
Author(s):  
Peter Dietrich ◽  
Simone Cesarz ◽  
Tao Liu ◽  
Christiane Roscher ◽  
Nico Eisenhauer

AbstractDiversity loss has been shown to change the soil community; however, little is known about long-term consequences and underlying mechanisms. Here, we investigated how nematode communities are affected by plant species richness and whether this is driven by resource quantity or quality in 15-year-old plant communities of a long-term grassland biodiversity experiment. We extracted nematodes from 93 experimental plots differing in plant species richness, and measured above- and belowground plant biomass production and soil organic carbon concentrations (Corg) as proxies for resource quantity, as well as C/Nleaf ratio and specific root length (SRL) as proxies for resource quality. We found that nematode community composition and diversity significantly differed among plant species richness levels. This was mostly due to positive plant diversity effects on the abundance and genus richness of bacterial-feeding, omnivorous, and predatory nematodes, which benefited from higher shoot mass and soil Corg in species-rich plant communities, suggesting control via resource quantity. In contrast, plant-feeding nematodes were negatively influenced by shoot mass, probably due to higher top–down control by predators, and were positively related to SRL and C/Nleaf, indicating control via resource quality. The decrease of the grazing pressure ratio (plant feeders per root mass) with plant species richness indicated a higher accumulation of plant-feeding nematodes in species-poor plant communities. Our results, therefore, support the hypothesis that soil-borne pathogens accumulate in low-diversity communities over time, while soil mutualists (bacterial-feeding, omnivorous, predatory nematodes) increase in abundance and richness in high-diversity plant communities, which may contribute to the widely-observed positive plant diversity–productivity relationship.


2020 ◽  
Author(s):  
Jose W. Valdez ◽  
Ane Kirstine Brunbjerg ◽  
Camilla Fløjgaard ◽  
Lars Dalby ◽  
Kevin K. Clausen ◽  
...  

AbstractDespite the important role of fungi for ecosystems, relatively little is known about the factors underlying the dynamics of their diversity. Moreover, studies do not typically consider their dark diversity: the absent species from an otherwise suitable site. Here, we examined the drivers of local fungal dark diversity in temperate woodland and open habitats using LiDAR and in-situ field measurements, combined with a systematically collected and geographically comprehensive (national) macro-fungi and plant data set. For the first time, we also estimated species pools of fungi by considering both plant and fungi co-occurrences. The most important LiDAR variables were amplitude and echo ratio, which are both thought to represent vegetation structure. These results suggest that the local fungal dark diversity is highest in tall dense forests like plantations and lowest in more open forests and open habitats with little woody vegetation. Plant species richness was the most important driver and negatively correlated with local fungal dark diversity. Soil fertility showed a positive relationship with dark diversity in open habitats. This may indicate that the local dark diversity of macro-fungi is highest in areas with a relatively high human impact (typically areas with low plant species richness and high soil fertility). Overall, this study brings novel insights into local macro-fungi dark diversity patterns, suggesting that a multitude of drivers related to both soil and vegetation act in concert to determine fungal dark diversity. Our results suggest that policymakers and conservation managers should consider plant species richness, soil fertility, and vegetation structure in future management plans for fungal communities.


2014 ◽  
Vol 36 (3) ◽  
pp. 309
Author(s):  
D. M. Orr ◽  
D. G. Phelps

The occurrence of interstitial species in Astrebla grasslands in Australia are influenced by grazing and seasonal rainfall but the interactions of these two influences are complex. This paper describes three studies aimed at determining and explaining the changes in plant species richness and abundance of the interstitial species in a long-term sheep utilisation experiment in an Astrebla grassland in northern Queensland. In the first study, increasing utilisation increased the frequency of Dactyloctenium radulans (Button grass) and Brachyachne convergens (Downs couch) and reduced that of Streptoglossa adscendens (Mint bush). In the second study, seasonal rainfall variation between 1984 and 2009 resulted in large annual differences in the size of the seed banks of many species, but increasing utilisation consistently reduced the seed bank of species such as Astrebla spp. and S. adscendens and increased that of species such as B. convergens, D. radulans, Amaranthus mitchellii (Boggabri) and Boerhavia sp. (Tar vine). In the third study, the highest species richness occurred at the lightest utilisation because of the presence of a range of palatable forbs, especially legumes. Species richness was reduced as utilisation increased. Species richness in the grazing exclosure was low and similar to that at the heaviest utilisation where there was a reduction in the presence of palatable forb species. The pattern of highest species richness at the lightest grazing treatment was maintained across three sampling times, even with different amounts of seasonal rainfall, but there was a large yearly variation in both the density and frequency of many species. It was concluded that the maintenance of highest species richness at the lightest utilisation was not aligned with other data from this grazing experiment which indicated that the maximum sustainable wool production occurred at moderate utilisation.


2021 ◽  
pp. 117017
Author(s):  
Edward Tipping ◽  
Jessica A.C. Davies ◽  
Peter A. Henrys ◽  
Susan G. Jarvis ◽  
Simon M. Smart

2013 ◽  
Vol 35 (1) ◽  
pp. 17 ◽  
Author(s):  
D. M. Orr ◽  
D. G. Phelps

The occurrence of interstitial species in Astrebla grasslands in Australia are influenced by grazing and seasonal rainfall but the interactions of these two influences are complex. This paper describes three studies aimed at determining and explaining the changes in plant species richness and abundance of the interstitial species in a long-term sheep utilisation experiment in an Astrebla grassland in northern Queensland. In the first study, increasing utilisation increased the frequency of Dactyloctenium radulans (Button grass) and Brachyachne convergens (Downs couch) and reduced that of Streptoglossa adscendens (Mint bush). In the second study, seasonal rainfall variation between 1984 and 2009 resulted in large annual differences in the size of the seed banks of many species, but increasing utilisation consistently reduced the seed bank of species such as Astrebla spp. and S. adscendens and increased that of species such as B. convergens, D. radulans, Amaranthus mitchellii (Boggabri) and Boerhavia sp. (Tar vine). In the third study, the highest species richness occurred at the lightest utilisation because of the presence of a range of palatable forbs, especially legumes. Species richness was reduced as utilisation increased. Species richness in the grazing exclosure was low and similar to that at the heaviest utilisation where there was a reduction in the presence of palatable forb species. The pattern of highest species richness at the lightest grazing treatment was maintained across three sampling times, even with different amounts of seasonal rainfall, but there was a large yearly variation in both the density and frequency of many species. It was concluded that the maintenance of highest species richness at the lightest utilisation was not aligned with other data from this grazing experiment which indicated that the maximum sustainable wool production occurred at moderate utilisation.


Sign in / Sign up

Export Citation Format

Share Document