scholarly journals Evaluating the performance of taxonomic and trait-based biomonitoring approaches for fine sediment in the UK

2022 ◽  
Vol 134 ◽  
pp. 108502
Author(s):  
Morwenna McKenzie ◽  
Judy England ◽  
Ian Foster ◽  
Martin Wilkes
Keyword(s):  
2002 ◽  
Vol 45 (7) ◽  
pp. 123-131 ◽  
Author(s):  
V.R. Stovin ◽  
J.P. Grimm ◽  
A.J. Saul

The optimisation of the design of a storage chamber is generally based upon some measure of the chamber's sedimentation efficiency. In the UK, chambers that minimise the deposition of fine sediments are preferred. Previous laboratory and CFD-based studies to measure efficiency have focused on steady flow conditions. However, both the flow hydraulics within a storage chamber and the pollutant loading in the incoming sewage vary markedly during storm events. This paper outlines a CFD-based approach for determining “overall” chamber efficiency. The approach employs an unsteady volume-of-fluid multiphase model and stochastic particle tracking. Preliminary results from a simplified two-dimensional model are presented.


2015 ◽  
Vol 3 (4) ◽  
pp. 1179-1220
Author(s):  
M. T. Perks ◽  
J. Warburton

Abstract. This paper describes the implementation of a novel mitigation approach and subsequent adaptive management, designed to reduce the transfer of fine sediment in Glaisdale Beck; a small upland catchment in the UK. Hydro-meteorological and suspended sediment datasets are collected over a two year period spanning pre- and post-diversion periods in order to assess the impact of the channel reconfiguration scheme on the fluvial suspended sediment dynamics. Analysis of the river response demonstrates that the fluvial sediment system has become more restrictive with reduced fine sediment transfer. This is characterised by reductions in flow-weighted mean suspended sediment concentrations from 77.93 mg L−1 prior to mitigation, to 74.36 mg L−1 following the diversion. A Mann–Whitney U test found statistically significant differences (p < 0.001) between the pre- and post-monitoring median SSCs. Whilst application of one-way analysis of covariance (ANCOVA) on the coefficients of sediment rating curves developed before and after the diversion found statistically significant differences (p < 0.001), with both Log a and b coefficients becoming smaller following the diversion. Non-parametric analysis indicates a reduction in residuals through time (p < 0.001), with the developed LOWESS model over-predicting sediment concentrations as the channel stabilises. However, the channel is continuing to adjust to the reconfigured morphology, with evidence of a headward propagating knickpoint which has migrated 120 m at an exponentially decreasing rate over the last 7 years since diversion. The study demonstrates that channel reconfiguration can be effective in mitigating fine sediment flux in upland streams but the full value of this may take many years to achieve whilst the fluvial system, slowly readjusts.


2003 ◽  
Vol 17 (16) ◽  
pp. 3245-3269 ◽  
Author(s):  
D. E. Walling ◽  
P. N. Owens ◽  
I. D. L. Foster ◽  
J. A. Lees

2016 ◽  
Vol 4 (3) ◽  
pp. 705-719 ◽  
Author(s):  
Matthew Thomas Perks ◽  
Jeff Warburton

Abstract. This paper describes the implementation of a novel mitigation approach and subsequent adaptive management, designed to reduce the transfer of fine sediment (< 2 mm) in Glaisdale Beck, a small, predominantly upland catchment in the UK. Hydro-meteorological and suspended sediment data sets are collected over a 2-year period spanning pre- and post-diversion periods in order to assess the impact of the channel reconfiguration scheme on the fluvial suspended sediment dynamics. Analysis of the river response demonstrates that the fluvial sediment system has become more restrictive with reduced fine sediment transfer. This is characterized by reductions in flow-weighted mean suspended sediment concentrations from 77.93 mg L−1 prior to mitigation, to 74.36 mg L−1 following the diversion. A Mann–Whitney U test found statistically significant differences (p < 0.001) between the pre- and post-monitoring median suspended sediment concentrations (SSCs). Whilst application of one-way analysis of covariance (ANCOVA) on the coefficients of sediment rating curves developed before and after the diversion found statistically significant differences (p < 0.001), with both Loga and b coefficients becoming smaller following the diversion. Non-parametric analysis indicates a reduction in residuals through time (p < 0.001), with the developed LOWESS model over-predicting sediment concentrations as the channel stabilizes. However, the channel is continuing to adjust to the reconfigured morphology, with evidence of a headward propagating knickpoint which has migrated 120 m at an exponentially decreasing rate over the last 7 years since diversion. The study demonstrates that channel reconfiguration can be effective in mitigating fine sediment flux in headwater streams but the full value of this may take many years to achieve whilst the fluvial system slowly readjusts.


2000 ◽  
Vol 111 (1) ◽  
pp. 78-90 ◽  
Author(s):  
C. R. M. Hay ◽  
T. P. Baglin ◽  
P. W. Collins ◽  
F. G. H. Hill ◽  
D. M. Keeling

2006 ◽  
Vol 175 (4S) ◽  
pp. 476-477
Author(s):  
Freddie C. Hamdy ◽  
Joanne Howson ◽  
Athene Lane ◽  
Jenny L. Donovan ◽  
David E. Neal

2006 ◽  
Vol 175 (4S) ◽  
pp. 210-210
Author(s):  
◽  
Freddie C. Hamdy ◽  
Athene Lane ◽  
David E. Neal ◽  
Malcolm Mason ◽  
...  
Keyword(s):  

2003 ◽  
Vol 2 (1) ◽  
pp. 131
Author(s):  
A ZAPHIRIOU ◽  
S ROBB ◽  
G MENDEZ ◽  
T MURRAYTHOMAS ◽  
S HARDMAN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document