Modeling high-severity fire, drought and climate change impacts on ponderosa pine regeneration

2013 ◽  
Vol 253 ◽  
pp. 56-69 ◽  
Author(s):  
Johannes J. Feddema ◽  
Joy Nystrom Mast ◽  
Melissa Savage
2013 ◽  
Vol 43 (6) ◽  
pp. 570-583 ◽  
Author(s):  
Melissa Savage ◽  
Joy Nystrom Mast ◽  
Johannes J. Feddema

We examine regeneration dynamics across landscapes under extreme climate conditions and a human-altered fire regime in ponderosa pine (Pinus ponderosa Douglas ex Lawson & C. Lawson) forests of the American Southwest. Our research asks how well these forests recover when unprecedented conditions of a high-severity fire regime combine with historical drought conditions. Tree recruitment is documented at five sites in New Mexico after high-severity fires that burned forests in the drought that prevailed from ∼1945 to 1958. We develop a water-balance type model to evaluate how altered microclimate conditions in the years after a fire and during a drought may inhibit ponderosa pine regeneration in comparison with drought conditions alone. We empirically identify two pathways of forest recovery following high-severity fires during drought: recovery to nonforest types, either dense shrubfields or shrubs in grasslands (four sites) or recovery to hyperdense forest (one site). Model simulations predict fewer favorable opportunities for germination, fewer periods favorable for seedling establishment, shortening of favorable establishment periods, and more adverse conditions because of later spring and earlier fall hard freezes. Our research suggests that a specific climate window critical to the capacity of southwestern ponderosa pine trees to regenerate is narrowed by a synchronous occurrence of high-severity fire and drought.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Megan P. Singleton ◽  
Andrea E. Thode ◽  
Andrew J. Sánchez Meador ◽  
Jose M. Iniguez

Abstract Background Fire regimes are shifting in ponderosa pine (Pinus ponderosa Lawson & C. Lawson)-dominated forests, raising concern regarding future vegetation patterns and forest resilience, particularly within high-severity burn patches. The southwestern US has recently experienced a marked increase in large fires that produce large, high-severity patch interiors, with few surviving trees. These areas could be more susceptible for forest loss and conversions to alternative vegetation types than areas closer to the forest edge with more available seed sources. To better understand forest recovery, we surveyed ponderosa pine regeneration within edge and core areas (>200 m from edge) of high-severity patches in ten fires that burned between 1996 to 2008 across Arizona and New Mexico, USA. Specifically, we compared regeneration density, height, and canopy cover in patch edge and core areas and used generalized linear models to investigate the abiotic and biotic factors that contribute to ponderosa pine seedling establishment and density. Results High-severity burn-patch edge and core plots were not significantly different in seedling density, height, or canopy cover across fires. Seedling establishment was more likely at higher-elevation mesic sites and less likely when Gambel oak (Quercus gambelii Nutt.) was more abundant. Seedling density was negatively impacted by shrub, grass, and Gambel oak cover. Conclusions Regeneration density varied among fires but analysis of regeneration in aggregated edge and core plots showed that abundance of seed availability was not the sole factor that limited ponderosa pine regeneration, probably because of surviving tree refugia within high-severity burn patches. Furthermore, our findings emphasize that ponderosa pine regeneration in our study area was significantly impacted by xeric topographic environments and vegetation competition. Continued warm and dry conditions and increased wildfire activity may delay the natural recovery of ponderosa pine forests, underscoring the importance of restoration efforts in large, high-severity burn patches.


2017 ◽  
Vol 405 ◽  
pp. 134-149 ◽  
Author(s):  
Suzanne M. Owen ◽  
Carolyn H. Sieg ◽  
Andrew J. Sánchez Meador ◽  
Peter Z. Fulé ◽  
José M. Iniguez ◽  
...  

Fire Ecology ◽  
2018 ◽  
Vol 14 (1) ◽  
pp. 143-163 ◽  
Author(s):  
Collin Haffey ◽  
Thomas D. Sisk ◽  
Craig D. Allen ◽  
Andrea E. Thode ◽  
Ellis Q. Margolis

2019 ◽  
Author(s):  
International Food Policy Research Institute (IFPRI)

Sign in / Sign up

Export Citation Format

Share Document