seedling establishment
Recently Published Documents


TOTAL DOCUMENTS

1145
(FIVE YEARS 181)

H-INDEX

66
(FIVE YEARS 6)

2022 ◽  
Vol 12 ◽  
Author(s):  
Yuan-Yuan Li ◽  
Margaux Boeraeve ◽  
Yu-Hsiu Cho ◽  
Hans Jacquemyn ◽  
Yung-I Lee

Mycorrhizal associations are essential for orchid germination and seedling establishment, and thus may constrain the distribution and abundance of orchids under natural conditions. Previous studies have shown that germination and seedling establishment in several orchids often decline with increasing distance from adult plants, resulting in non-random spatial patterns of seedling establishment. In contrast, individuals of the fully mycoheterotrophic orchid Gastrodia confusoides often tend to have random aboveground spatial patterns of distribution within bamboo forests. Since G. confusoides is parasitic on litter-decaying fungi, its random spatial patterns of distribution may be due to highly scattered patterns of litter-decaying fungi within bamboo forests. To test this hypothesis, we first identified the main mycorrhizal fungi associating with developing seeds and adult plants at a bamboo forest site in Taiwan using Miseq high-throughput DNA sequencing. Next, we combined seed germination experiments with quantitative PCR (qPCR) analyses to investigate to what extent the abundance of mycorrhizal fungi affected spatial patterns of seed germination. Our results show that seed germination and subsequent growth to an adult stage in G. confusoides required a distinct switch in mycorrhizal partners, in which protocorms associated with a single Mycena OTU, while adults mainly associated with an OTU from the genus Gymnopus. A strong, positive relationship was observed between germination and Mycena abundance in the litter, but not between germination and Gymnopus abundance. Fungal abundance was not significantly related to the distance from the adult plants, and consequently germination was also not significantly related to the distance from adult plants. Our results provide the first evidence that the abundance of litter-decaying fungi varies randomly within the bamboo forest and independently from G. confusoides adults.


2022 ◽  
Vol 8 ◽  
Author(s):  
Arturo Zenone ◽  
Fabio Badalamenti ◽  
Adriana Alagna ◽  
Stanislav N. Gorb ◽  
Eduardo Infantes

Among a suite of abiotic and biotic factors, the hydrodynamic regime strongly influences the success of seagrass recruitment through sexual propagules. Uprooting of propagules by drag forces exerted by currents and waves is one of the main causes for the failed establishment and the consequent recruitment. Substrate type and stability play a key role in determining the success of colonization through sexual propagules, as seedling establishment probabilities proved to be significantly higher on rocky bottoms than on unstable unconsolidated substrates. In this research, the current and wave flow intensity that Posidonia oceanica seedlings anchored to rocky substrates can withstand before uprooting were evaluated and the influence of substrate complexity on seedling anchorage success and anchorage strength was investigated. P. oceanica seedlings withstood the current velocity of 70 cm s–1 and increased orbital flow velocities up to 25 cm s–1. Seedling adhesion strength ranged from 3.92 to 29.42 N. Results of the present study corroborate the hypothesis that substrate complexity at scales relevant to the size of propagules is a crucial feature for P. oceanica seedling establishment. The intensity of unidirectional and oscillatory flow that seedlings can withstand without being dislodged assessed in this study support the hypothesis that P. oceanica sexual propagules, once adhered to a consolidated substrate, are able to tolerate high hydrodynamic stress. The results of the present study contribute to re-evaluation of the habitat requirements of P. oceanica, assessing the range of hydrodynamic conditions that this species can tolerate during the early stages of its life history.


Plants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 139
Author(s):  
Xiaomin Wang ◽  
Rong Wu ◽  
Tongshu Shen ◽  
Zhenan Li ◽  
Chengyong Li ◽  
...  

MYB-type transcription factors play essential regulatory roles in seed germination and the response to seedling establishment stress. This study isolated a rice R2R3-MYB gene, OsMYBAS1, and functionally characterized its role in seed germination by generating transgenic rice plants with the overexpression and knockout of OsMYBAS1. Gene expression analysis suggested that OsMYBAS1 was highly expressed in brown rice and root, respectively. Subcellular localization analysis determined that OsMYBAS1 was localized in the nucleus. No significant differences in seed germination rate were observed among wild-type (WT) and transgenic rice plants at the 0-cm sowing depth. However, when sown at a depth of 4 cm, higher germination rates, root lengths and seedling heights were obtained in OsMYBAS1-overexpressing plants than in WT. Furthermore, the opposite results were recorded between the osmybas1 mutants and WT. Moreover, OsMYBAS1-overexpressing plants significantly enhanced superoxide dismutase (SOD) enzyme activity and suppressed the accumulation of malondialdehyde (MDA) content at the 4-cm sowing depth. These results indicate that the MYB transcription factor OsMYBAS1 may promote rice seed germination and subsequent seedling establishment under deep-sowing conditions. These findings can provide valuable insight into rice seed-quality breeding to facilitate the development of a dry, direct-seeding production system.


2021 ◽  
pp. 1-8
Author(s):  
Paul G. Jefferson ◽  
Nathan Gregg ◽  
Les Hill ◽  
H.A. (Bart) Lardner

Zero-till seed drills are readily available for crop seeding in the prairie region of western Canada but have not been evaluated for sod-seeding in perennial forage. Sod-seeding a legume, such as alfalfa (Medicago sativa L.), into the existing perennial grass vegetation improves forage yield and quality for ruminant livestock grazing and production. Suppression of the existing vegetation with herbicide has been reported to increase alfalfa seedling establishment. We evaluated six commercially available zero-till seed drill openers by sod-seeding alfalfa into a crested wheatgrass [Agropyron cristatum (L.) Gaertn.] pasture with or without glyphosate suppression of the existing vegetation in Lanigan Saskatchewan. Alfalfa seedling establishment (52.2 vs. 21.9 seedlings m−1 ± 6.8), alfalfa composition (42.5% vs. 0.2% ± 8.6), and alfalfa yield (1105 kg·ha−1 vs. 12 kg·ha−1 ± 206) in 2011 were increased by the application of herbicide. Seed drill openers performed similarly for all three variables. Nine years later, in June 2020, there was greater alfalfa composition (13.3% vs. 0% ± 2.3) and forage yield (1325 vs. 957 kg·ha−1 ± 127) in the sod-seeded plots than in the unseeded controls but the alfalfa plant cover, alfalfa composition, alfalfa yield and forage yield were similar among seed drill openers. There was also no difference in these variables due to herbicide application nine years prior. Livestock producers can utilize currently available zero-till seeding equipment for sod-seeding alfalfa to rejuvenate grass pastures in the thin Black soil zone of western Canada with the expectation of persistence of alfalfa for nine years.


2021 ◽  
Author(s):  
Sananda Mondal ◽  
Bandana Bose

Biologically seed is a small embryonic plant along with either endosperm or cotyledons, enclosed with in an outer protecting covering called seed coat. During the time of seed development large metabolic conversions take place, including proper partitioning of photo-assimilates and the formation of complex polymeric forms of carbohydrate, protein and fats for storing as seed reserves. In developing phase of seeds, every detail information stored in the embryonic plant are genetically and sometimes epigenetically also predetermined and influenced by various environmental/external factors already faced by the mother plant. In the growth cycle of plants, seed germination and seedling establishment are the two critical phases where survivability of the seedlings in natural habitats is a matter of question until the onset of photosynthesis by the established seedling. The various sequence of complex processes known to occur in both the phases i.e., an array of metabolic activities are initiating which eventually leads to the renewal of embryo growth of the dormant seeds and ultimately seedlings are established. Efficient seed germination is an important factor for agricultural sciences and successful establishment of germinated seedling requires a rapid and uniform emergence and root growth. With these aspects of seed physiology kept in mind the present chapter will be designed in such a way where, a gap filling, inter linking, eco- and farmers\' friendly technology i.e., ‘seed priming’ (a pre-sowing partial hydration of seeds) will be considered to improve the rate and uniformity of germination and seedling establishment. Under optimal and adverse environmental conditions, the primed seeds of diversified species lead to an enhanced germination performance with increased vigor index has been reported by various scientists which indicates a good establishment of seedlings in the field and thereafter enhance the performance of crops as a whole.


2021 ◽  
Vol 22 (23) ◽  
pp. 12971
Author(s):  
Fang Lin ◽  
Jing Cao ◽  
Jiale Yuan ◽  
Yuxia Liang ◽  
Jia Li

Light and brassinosteroid (BR) are external stimuli and internal cue respectively, that both play critical roles in a wide range of developmental and physiological process. Seedlings grown in the light exhibit photomorphogenesis, while BR promotes seedling etiolation. Light and BR oppositely control the development switch from shotomorphogenesis in the dark to photomorphogenesis in the light. Recent progress report that substantial components have been identified as hubs to integrate light and BR signals. Photomorphogenic repressors including COP1, PIFs, and AGB1 have been reported to elevate BR response, while photomorphogenesis-promoting factors such as HY5, BZS1, and NF-YCs have been proven to repress BR signal. In addition, BR components also modulate light signal. Here, we review the current research on signaling network associated with light and brassinosteroids, with a focus on the integration of light and BR signals enabling plants to thrive in the changeable environment.


2021 ◽  
Vol 13 (13) ◽  
pp. 20056-20065
Author(s):  
Maria Theresa ◽  
Appukuttan Kamalabai Sreekala ◽  
Jayalakshmi Mohanlal

Ophiorrhiza caudata is a creeping, perennial herb distributed along wet and shady areas. The species is distylous with two distinct floral morphs: pin and thrum. Flowering usually occurs during the monsoon season. No particular difference was noticed in the flowering phenology of the two morphs. Presently the species is self-incompatible, however, it shows a tendency towards intramorph compatibility. Fruit set is above 60% in open pollination and intermorph pollination. Bees and butterflies are the major pollinators. The pollen flow between the two floral morphs varies depending upon floral morphology and pollinators. Fruit is a bi-valved capsule which dehisces by a splashing drop mechanism. The seeds are very minute. The rate of seed germination and seedling establishment in the wild condition is very poor due to adverse climatic factors. Ophiorrhiza caudata is struggling for survival in its natural habitat, where habitat fragmentation, climatic factors and poor seedling establishment could account for its narrow distribution.


Sign in / Sign up

Export Citation Format

Share Document