Ecosystem valuation and eco-compensation for conservation of traditional paddy ecosystems and varieties in Kerala, India

2021 ◽  
Vol 49 ◽  
pp. 101272
Author(s):  
Shenaz Rasheed ◽  
P. Venkatesh ◽  
Dharam Raj Singh ◽  
V.R. Renjini ◽  
Girish Kumar Jha ◽  
...  
Keyword(s):  
2019 ◽  
Author(s):  
Aaron Matthius Eger ◽  
Rebecca J. Best ◽  
Julia Kathleen Baum

Biodiversity and ecosystem function are often correlated, but there are multiple hypotheses about the mechanisms underlying this relationship. Ecosystem functions such as primary or secondary production may be maximized by species richness, evenness in species abundances, or the presence or dominance of species with certain traits. Here, we combined surveys of natural fish communities (conducted in July and August, 2016) with morphological trait data to examine relationships between diversity and ecosystem function (quantified as fish community biomass) across 14 subtidal eelgrass meadows in the Northeast Pacific (54° N 130° W). We employed both taxonomic and functional trait measures of diversity to investigate if ecosystem function is driven by species diversity (complementarity hypothesis) or by the presence or dominance of species with particular trait values (selection or dominance hypotheses). After controlling for environmental variation, we found that fish community biomass is maximized when taxonomic richness and functional evenness is low, and in communities dominated by species with particular trait values – those associated with benthic habitats and prey capture. While previous work on fish communities has found that species richness is positively correlated with ecosystem function, our results instead highlight the capacity for regionally prevalent and locally dominant species to drive ecosystem function in moderately diverse communities. We discuss these alternate links between community composition and ecosystem function and consider their divergent implications for ecosystem valuation and conservation prioritization.


Author(s):  
Gloria Estenzo Ramos ◽  
Rose Liza Eisma Osorio

Mangroves perform a crucial role in maintaining the ecological integrity of the coastal ecosystem. They  act as filters in the coastal zone, preventing the damaging effects of upland sediments on seagrass beds and coral reefs, minimise the effects of storm surges and act as carbon sinks that mitigate climate change. These essential services, however, are degraded through indiscriminate cutting, conversion of mangrove swamps to fishponds, reclamation projects and other coastal developments and pollution. Experts reveal that the Indo-Malay Philippine Archipelago has one of the highest rates of mangroves loss. From an estimated 500,000 hectares of mangrove cover in 1918, only 120,000 hectares of mangroves remain in the Philippines today. The country has had the legal and policy framework to protect and conserve mangroves. But weak implementation of laws, overlapping functions among agencies and, in general, poor management by the people and local governments have hindered the sustainable management of mangrove forests. Positive developments, however, are taking place with the promulgation of laws on climate change and executive orders which specifically include mangrove and protected areas under the National Greening Program (NGP) and addresses equity, food security and poverty issues by giving preference to NGP beneficiary communities as a priority in the Conditional Cash Transfer (CCT) Program.  Moreover, participatory Planning and Multi-stakeholder Approaches are among the strategies contemplated by the Philippine National REDD + Strategy. The article examines the implementation and effects of the Philippine National REDD+ Strategy, the National Climate Change Action Plan which specifically integrates REDD+ and ecosystem valuation into decision-making, and the executive orders which support the mainstreaming of the National Greening Program.


Sign in / Sign up

Export Citation Format

Share Document