scholarly journals Chemical Impacts of CO2 Flooding on Well Composite Samples: Experimental Assessment of Well Integrity for CO2 Sequestration

2013 ◽  
Vol 37 ◽  
pp. 5738-5745 ◽  
Author(s):  
Yuki Asahara ◽  
Saeko Mito ◽  
Ziqiu Xue ◽  
Yuji Yamashita ◽  
Kazutoshi Miyashiro
Energy ◽  
2021 ◽  
Vol 226 ◽  
pp. 120294
Author(s):  
Chen Xiaolong ◽  
Li Yiqiang ◽  
Tang Xiang ◽  
Qi Huan ◽  
Sun Xuebing ◽  
...  

2013 ◽  
Vol 17 (2) ◽  
pp. 307-323 ◽  
Author(s):  
C. Desceliers ◽  
C. Soize ◽  
H. Yáñez-Godoy ◽  
E. Houdu ◽  
O. Poupard

2021 ◽  
Author(s):  
Mohd Azuan Abu Bakar ◽  
Wan Amni Wan Mohamad ◽  
M Wahidullah Moh Wahi ◽  
Muhammad Syafeeq Ebining Amir

Abstract The CO2 sequestration project is becoming increasingly attractive due to tax exemption benefits and as an initiative to reduce the global warming effect (D'Alesio, P., Poloni, R., Valente, P., & Magarini, P. A.2010). One of the major challenges in CO2 sequestration project is to ensure that the injection well integrity is intact throughout the well operating life. CO2 gas leakage to the surface or sea is unacceptable. Therefore, the considerations of using exotic/premium tubing materials are usually considered as the base case for continuous long-term operations (Baklid, A., Korbol, R., & Owren, G.1996). Typical materials used for CO2 injector wells are either Corrosion Resistant Alloy (CRA) or epoxy lined tubulars. The most widely adopted CRA material is 25 Cr (L. Smith, M.A. Billingham, C.-H. Lee, D. Milanovic, 2011). Selection of 25 Cr material is considered as conservative and may well be overdesigning. The main drawback is the high well cost associated with the application of 25 Cr tubing. Meanwhile, alternative materials such as epoxy lined tubulars are exposed to high temperature and pressure blistering effects and prone to mechanical damage caused by wireline activities, hauling, running, and pulling off the tubing (Newton, L. E., & McClay, R. A, 1977). Application of materials other than 25 Cr for CO2 injector wells, such as 22 Cr, Super 17 Cr, Super 15 Cr, Super 13 Cr, 13 Cr and carbon steel are uncommon but may be fit for purpose. Detailed studies using analytical method and physical tests are required to further qualify these materials for application in CO2 injector wells. These studies should cover all possible conditions throughout the well life such as injection, shut-in, flowback and by considering surface and bottom hole conditions which may contribute to increase in the corrosion rates for different types of materials. Other tests warranted before selecting the suitable material for field application include physical coupon, Sulfide Stress Cracking (SSC) and Stress Corrosion Cracking (SCC) tests. This paper describes the material selection methodology and corrosion studies performed in the K1 field CO2 sequestration project using the other materials mentioned above as an effort to optimize well costs and improve overall project economics without jeopardizing the CO2 injector well integrity.


2021 ◽  
Author(s):  
Pankaj Kumar Tiwari ◽  
Debasis Priyadarshan Das ◽  
Parimal Arjun Patil ◽  
Prasanna Chidambaram ◽  
Zoann Low ◽  
...  

Abstract The increasing atmospheric concentration of carbon dioxide (CO2), a greenhouse gas (GHG) is creating environmental imbalance and affecting the climate adversely due to growing industrialization. Global leaders are emphasizing on controlling the production of GHG. However, growing demands of natural gas, industry is embarking on the development of high CO2 contaminant gas fields to meet supply gap. Development and management of contaminated hydrocarbon gas fields add additional dimension of sequestration of CO2 after production and separation in project management. CO2 sequestration is a process for eternity with a possibility of zero-degree failure. Monitoring, measuring and verification (MMV) of injected CO2 volume in sequestration is critical component along with geological site selection, transportation, storage process. The present study discusses all the impacting parameters which makes whole process environment friendly, economically prudent and adhering to national and international regulations. The migration of injected CO2 plume in the reservoir is uncertain and its monitoring is equally challenging. The role of MMV planning is critical in development of high CO2 contaminant fields of offshore Sarawak. It substantiates that injected CO2 in the reservoir is intact and safely stored for hundreds of years after injection and possesses minimum to no risk to HS&E. The deployment of Multi-Fiber Optic Sensor System (M-FOSS) promises a cost-effective solution for monitoring the lateral & vertical migration of CO2 plume by acquiring 4D DAS-VSP (Distributed Acoustic Sensor – Vertical Seismic Profile) survey and for the well integrity by analyzing DAS/DTS (Distributed Temperature Sensor)/DPS (Distributed Pressure Sensor)/DSS (Distributed Strain Sensor) data. Simulation results and injectivity test at laboratory for in-situ CO2 injection has demonstrated the possibility of over 100MMscfd/well injection in aquifer to meet the total CO2 injection of 1.2Bscfd for full field development while maintaining the reservoir integrity. Uncertainty & risk analysis shows possible presence of seismically undistinguished fractures and minor faults, an early breakthrough of injected CO2 cannot be ruled out. The depleted reservoir storage study divulges the containment capacity of identified carbonate reservoirs as well as conformance of potential storage sites. The fault-seal analysis and reservoir integrity studies determine the robustness of the long-term security of the CO2 storage. Injectivity study demonstrates the optimum and maximum possible rates of CO2 injection into these depleted gas reservoirs. VSP simulation results show that a subsurface coverage of 3-4 km2 per well is achievable, which along with simulated CO2 plume extent help to determine the number of wells required to get maximum monitoring coverage for the MMV planning. The deployment of M-FOSS technology is novel and proactive approach to monitor the CO2 plume migration and well integrity. First ever development of MMV Planning for CO2 Sequestration in offshore Sarawak, Malaysia using novel and cutting-edge M-FOSS technology for proactive monitoring of CO2 plume migration and well integrity.


SPE Journal ◽  
2016 ◽  
Vol 21 (03) ◽  
pp. 0809-0826 ◽  
Author(s):  
C.. Qiao ◽  
L.. Li ◽  
R. T. Johns ◽  
J.. Xu

Summary Geochemical reactions between fluids and carbonate rocks can change porosity and permeability during carbon dioxide (CO2) flooding, which may significantly affect well injectivity, well integrity, and oil recovery. Reactions can cause significant scaling in and around injection and production wells, leading to high operating costs. Dissolution-induced well-integrity issues and seabed subsidence are also reported as a substantial problem at the Ekofisk field. Furthermore, mineral reactions can create fractures and vugs that can cause injection-conformance issues, as observed in experiments and pressure transients in field tests. Although these issues are well-known, there are differing opinions in the literature regarding the overall impacts of geochemical reactions on permeability and injectivity for CO2 flooding. In this research, we develop a new model that fully couples reactive transport and compositional modeling to understand the interplay between multiphase flow, phase behavior, and geochemical reactions under reservoir and injection conditions relevant in the field. Simulations were carried out with a new in-house compositional simulator on the basis of an implicit-pressure/explicit-composition and finite-volume formulation that is coupled with a reactive transport solver. The compositional and geochemical models were validated separately with CMG-GEM (CMG 2012) and CrunchFlow (Steefel 2009). Phase-and-chemical equilibrium constraints are solved simultaneously to account for the interaction between phase splits and chemical speciation. The Søreide and Whitson (1992) modified Peng-Robinson equation of state is used to model component concentrations present in the aqueous and hydrocarbon phases. The mineral-dissolution reactions are modeled with kinetic-rate laws that depend on the rock/brine contact area and the brine geochemistry, including pH and water composition. Injectivity changes caused by rock dissolution and formation scaling are investigated for a five-spot pattern by use of several common field-injection conditions. The results show that the type of injection scheme and water used (fresh water, formation water, and seawater) has a significant impact on porosity and permeability changes for the same total volume of CO2 and water injected. For continuous CO2 injection, very small porosity changes are observed as a result of evaporation of water near the injection well. For water-alternating-gas (WAG) injection, however, the injectivity increases from near zero to 50%, depending on the CO2 slug size, number of cycles, and the total amount of injected water. Simultaneous water-alternating-gas injection (SWAG) shows significantly greater injectivity increases than WAG, primarily because of greater exposure time of the carbonate surface to CO2-saturated brine coupled with continued displacement of calcite-saturated brine. For SWAG, carbonate dissolution occurs primarily near the injection well, extending to larger distances only when the specific surface area is small. Formation water and seawater lead to similar injectivity increases. Carbonated waterflooding (a special case of SWAG) shows even greater porosity increases than SWAG because more water is injected in this case, which continuously sweeps out calcite-saturated brine. The minerals have a larger solubility in brine than in fresh water because of the formation of aqueous complexes, leading to more dissolution instead of precipitation. Overall, this research points to the importance of considering the complex process coupling among multiphase flow, transport, phase behavior, and geochemical reactions in understanding and designing schemes for CO2 flooding as well as enhanced oil recovery at large.


2016 ◽  
Vol 161 ◽  
pp. 85-91 ◽  
Author(s):  
Jinju Han ◽  
Minkyu Lee ◽  
Wonsuk Lee ◽  
Youngsoo Lee ◽  
Wonmo Sung

Sign in / Sign up

Export Citation Format

Share Document