functional genes
Recently Published Documents


TOTAL DOCUMENTS

703
(FIVE YEARS 316)

H-INDEX

44
(FIVE YEARS 10)

2022 ◽  
Vol 423 ◽  
pp. 127045
Author(s):  
Wanli Peng ◽  
Yali Fu ◽  
Ben Jia ◽  
Xin Sun ◽  
Yanqiu Wang ◽  
...  

Geoderma ◽  
2022 ◽  
Vol 408 ◽  
pp. 115588
Author(s):  
Qiufang Zhang ◽  
Jiacong Zhou ◽  
Xiaojie Li ◽  
Yong Zheng ◽  
Lin Xie ◽  
...  

2022 ◽  
Vol 18 (1) ◽  
pp. 1-13
Author(s):  
Ramanathan Sowdhamini ◽  

Saffron (Crocus sativus L.) is the low yielding plant of medicinal and economic importance. Therefore, it is of interest to report the draft genome sequence of C. sativus. The draft genome of C. sativus has been assembled using Illumina sequencing and is 3.01 Gb long covering 84.24% of genome. C. sativus genome annotation identified 53,546 functional genes (including 5726 transcription factors), 862,275 repeats and 964,231 SSR markers. The genes involved in the apocarotenoids biosynthesis pathway (crocin, crocetin, picrocrocin, and safranal) were found in the draft genome analysis.


Author(s):  
Haroon Rasheed ◽  
Sajid Fiaz ◽  
Muhammad Abid Khan ◽  
Sultan Mehmood ◽  
Faizan Ullah ◽  
...  

mSphere ◽  
2022 ◽  
Author(s):  
Shanshan Meng ◽  
Tao Peng ◽  
Xiaobo Liu ◽  
Hui Wang ◽  
Tongwang Huang ◽  
...  

Bacteria have important functions in biogeochemical cycles, but studies on their function in an important ecosystem, mangroves, are still limited. Here, we investigated the ecological role of bacteria involved in biogeochemical cycles in seven representative mangroves of southern China.


2022 ◽  
Vol 10 (1) ◽  
pp. 140
Author(s):  
Wenjing Liu ◽  
Kai Xue ◽  
Runpeng Hu ◽  
Jizhong Zhou ◽  
Joy D. Van Nostrand ◽  
...  

Short rotation coppice (SRC) is increasingly being adopted for bioenergy production, pollution remediation and land restoration. However, its long-term effects on soil microbial communities are poorly characterized. Here, we studied soil microbial functional genes and their biogeographic pattern under SRC with willow trees as compared to those under permanent grassland (C). GeoChip analysis showed a lower functional gene diversity in SRC than in C soil, whereas microbial ATP and respiration did not change. The SRC soil had lower relative abundances of microbial genes encoding for metal(-oid) resistance, antibiotic resistance and stress-related proteins. This indicates a more benign habitat under SRC for microbial communities after relieving heavy metal stress, consistent with the lower phytoavailability of some metals (i.e., As, Cd, Ni and Zn) and higher total organic carbon, NO3−-N and P concentrations. The microbial taxa–area relationship was valid in both soils, but the space turnover rate was higher under SRC within 0.125 m2, which was possibly linked to a more benign environment under SRC, whereas similar values were reached beyond thisarea. Overall, we concluded that SRC management can be considered as a phytotechnology that ameliorates the habitat for soil microorganisms, owing to TOC and nutrient enrichment on the long-term.


Sign in / Sign up

Export Citation Format

Share Document