Geological Storage
Recently Published Documents


TOTAL DOCUMENTS

876
(FIVE YEARS 269)

H-INDEX

43
(FIVE YEARS 10)

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 344
Author(s):  
Ping Yue ◽  
Rujie Zhang ◽  
James J. Sheng ◽  
Gaoming Yu ◽  
Feng Liu

As the demands of tight-oil Enhanced Oil Recovery (EOR) and the controlling of anthropogenic carbon emission have become global challenges, Carbon Capture Utilization and Sequestration (CCUS) has been recognized as an effective solution to resolve both needs. However, the influential factors of carbon dioxide (CO2) geological storage in low permeability reservoirs have not been fully studied. Based on core samples from the Huang-3 area of the Ordos Basin, the feasibility and influential factors of geological CO2 sequestration in the Huang-3 area are analyzed through caprock breakthrough tests and a CO2 storage factor experiment. The results indicate that capillary trapping is the key mechanism of the sealing effect by the caprock. With the increase of caprock permeability, the breakthrough pressure and pressure difference decreased rapidly. A good exponential relationship between caprock breakthrough pressure and permeability can be summarized. The minimum breakthrough pressure of CO2 in the caprock of the Huang-3 area is 22 MPa, and the breakthrough pressure gradient is greater than 100 MPa/m. Huang-3 area is suitable for the geological sequestration of CO2, and the risk of CO2 breakthrough in the caprock is small. At the same storage percentage, the recovery factor of crude oil in larger permeability core is higher, and the storage percentage decreases with the increase of recovery factor. It turned out that a low permeability reservoir is easier to store CO2, and the storage percentage of carbon dioxide in the miscible phase is greater than that in the immiscible phase. This study can provide empirical reference for caprock selection and safety evaluation of CO2 geological storage in low permeability reservoirs within Ordos Basin.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jie Ren ◽  
Di Feng

The sensitivity analysis of the salting-out effect on well injectivity is a significant work in the research of geological storage of CO2 in deep saline aquifers, which is helpful in the selection of storage sites and the design of the injection strategy. We conduct a detailed sensitivity analysis about the salting-out process using the local sensitivity method and two global sensitivity methods. Sensitivity coefficients showed that brine salinity (XNaCl) has the highest sensitivity and interaction effect, the CO2 injection rate (QCO2) has a greater influence in the early stage of the salting-out process and a smaller influence in the end stage, and the other three parameters (empirical parameters related to the pore distribution m, the liquid residual saturation in the relative permeability function Splr, and the liquid residual saturation in the capillary pressure function Sclr) have a smaller sensitivity. This paper also analyzes the calculation amount of different sensitivity methods and suitable ways of obtaining the sensitivity coefficient and reveals the following. (1) The sensitivity coefficient changes dynamically with time, if only the sensitivity of the final state is taken into account on a long-time physical process, and some sensitive parameters during the process may be neglected. (2) The selection of the sample size should be based on the convergence of multiple calculations, and the results of the empirical calculation are uncertain. (3) The calculation of Sobol sensitivity is complicated, the results calculated by surrogate model depend on whether the sample is representative enough; on the other hand, it is feasible to use Sti-Si approximation to characterize the second-order sensitivity to reduce the computation. The research results not only reveal the sensitivity of the parameters related to the injection well salting-out problem during CO2 storage in deep saline aquifers but also guide the calculation of global sensitivity analysis with a similar physical process.


Author(s):  
J.K. Pearce ◽  
C. Khan ◽  
S.D. Golding ◽  
V. Rudolph ◽  
J.R. Underschultz

2021 ◽  
pp. 103895
Author(s):  
Muhammad Ali ◽  
Nilesh Kumar Jha ◽  
Nilanjan Pal ◽  
Alireza Keshavarz ◽  
Hussein Hoteit ◽  
...  

2021 ◽  
Vol 1 ◽  
pp. 141
Author(s):  
Manuel Bailera ◽  
Takao Nakagaki ◽  
Ryoma Kataoka

Background: The Rist diagram is useful for predicting changes in blast furnaces when the operating conditions are modified. In this paper, we revisit this methodology to provide a general model with additions and corrections. The reason for this is to study a new concept proposal that combines oxygen blast furnaces with Power to Gas technology. The latter produces synthetic methane by using renewable electricity and CO2 to partly replace the fossil input in the blast furnace. Carbon is thus continuously recycled in a closed loop and geological storage is avoided. Methods: The new model is validated with three data sets corresponding to (1) an air-blown blast furnace without auxiliary injections, (2) an air-blown blast furnace with pulverized coal injection and (3) an oxygen blast furnace with top gas recycling and pulverized coal injection. The error is below 8% in all cases. Results: Assuming a 280 tHM/h oxygen blast furnace that produces 1154 kgCO2/tHM, we can reduce the CO2 emissions between 6.1% and 7.4% by coupling a 150 MW Power to Gas plant. This produces 21.8 kg/tHM of synthetic methane that replaces 22.8 kg/tHM of coke or 30.2 kg/tHM of coal. The gross energy penalization of the CO2 avoidance is 27.1 MJ/kgCO2 when coke is replaced and 22.4 MJ/kgCO2 when coal is replaced. Considering the energy content of the saved fossil fuel, and the electricity no longer consumed in the air separation unit thanks to the O2 coming from the electrolyzer, the net energy penalizations are 23.1 MJ/kgCO2 and 17.9 MJ/kgCO2, respectively. Discussion: The proposed integration has energy penalizations greater than conventional amine carbon capture (typically 3.7 – 4.8 MJ/kgCO2), but in return it could reduce the economic costs thanks to diminishing the coke/coal consumption, reducing the electricity consumption in the air separation unit, and eliminating the requirement of geological storage.


2021 ◽  
Vol 3 (11) ◽  
Author(s):  
Thomas J. Robshaw ◽  
Joshua Turner ◽  
Sarah Kearney ◽  
Brant Walkley ◽  
Clint A. Sharrad ◽  
...  

Abstract Abstract Iodine-129 poses a significant challenge in the drive towards lowering radionuclide emissions from used nuclear fuel recycling operations. Various techniques are employed for capture of gaseous iodine species, but it is also present, mainly as iodide anions, in problematic residual aqueous wastestreams, which have stimulated research interest in technologies for adsorption and retention of the radioiodine. This removal effort requires specialised adsorbents, which use soft metals to create selectivity in the challenging chemical conditions. A review of the literature, at laboratory scale, reveals a number of organic, inorganic and hybrid adsorbent matrices have been investigated for this purpose. They are functionalised principally by Ag metal, but also Bi, Cu and Pb, using numerous synthetic strategies. The iodide capacity of the adsorbents varies from 13 to 430 mg g−1, with ion-exchange resins and titanates displaying the highest maximum uptakes. Kinetics of adsorption are often slow, requiring several days to reach equilibrium, although some ligated metal ion and metal nanoparticle systems can equilibrate in < 1 h. Ag-loaded materials generally exhibit superior selectivity for iodide verses other common anions, but more consideration is required of how these materials would function successfully in industrial operation; specifically their performance in dynamic column experiments and stability of the bound radioiodine in the conversion to final wasteform and subsequent geological storage. Article highlights Metallated adsorbents for the capture and retention of radioiodine in the nuclear industry are assessed. The strengths and weaknesses of organic, inorganic and hybrid support matrices and loading mechanisms are discussed. Pathways for progression of this technology are proposed. Graphic abstract


2021 ◽  
pp. petgeo2020-117
Author(s):  
Giampaolo Proietti ◽  
Marko Cvetković ◽  
Bruno Saftić ◽  
Alessia Conti ◽  
Valentina Romano ◽  
...  

One of the most innovative and effective technologies developed in recent decades for reducing carbon dioxide emissions to the atmosphere is CCS (Carbon Capture & Storage). It consists of capture, transport and injection of CO2 produced by energy production plants or other industries. The injection takes place in deep geological formations with the suitable geometrical and petrophysical characteristics to permanently trap CO2 in the subsurface, which is called geological storage. In the development process of a potential geological storage site, correct capacity estimation of the injectable volumes of CO2 is one of the most important aspects. There are various approaches to estimate CO2 storage capacities for potential traps, including geometrical equations, dynamic modelling, numerical modelling, and 3D modelling. In this work, generation of three-dimensional petrophysical models and equations for calculation of the storage volumesare used to estimate the effective storage capacity of four potential saline aquifers in the Adriatic Sea offshore. The results show how different saline aquifers, with different lithologies at favourable depths, can host a fair amount of CO2, that will imply a further and more detailed feasibility studies for each of these structures. A detailed analysis is carried out for each saline aquifer identified, varying the parameters of each structure identified, and adapting them for a realistic estimate of potential geological storage capacity.Thematic collection: This article is part of the Geoscience for CO2 storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage


Sign in / Sign up

Export Citation Format

Share Document