injection well
Recently Published Documents


TOTAL DOCUMENTS

477
(FIVE YEARS 125)

H-INDEX

26
(FIVE YEARS 3)

Author(s):  
Mikhail Lubkov ◽  
Oksana Zakharchuk ◽  
Viktoriia Dmytrenko ◽  
Oleksandr Petrash

Numerical modeling of the distribution of the reservoir pressure drop in the vicinity of an operating well was carried out taking into account the inhomogeneous distribution of filtration characteristics (permeability and oil viscosity) in the near and distant zones of the well operation in order to study the practical aspects of filtration in heterogeneous oil-bearing formations based on a combined finite-element-difference method for non-stationary problem of piezoconductivity. The use of the combined finite-element-difference method enables to combine the advantages of the finite-element method and the finite difference method: to model geometrically complex areas, to find the value at any point of the object under study, while the implicit difference scheme. It is shown that the intensity of filtration processes in the vicinity of the operating well depends mainly on the permeability, and, to a lesser extent, on the viscosity of the oil. Moreover, the influence of the permeability of the oil phase in the remote zone (Rd < 5 m) is greater than the effect in the close zone (Rd > 5 m) of the operating well. In the case of low permeability of the oil phase in the vicinity of the existing well, to maintain stable oil production, it is necessary to place an injection well near the production well. Using the method suggested, it is possible to predict the effect of the injection well on the formation pressure distribution in the formation. The scientific novelty of the work lies in the study of the influence of the heterogeneous permeability and oil viscosity distribution on the reservoir pressures distribution around the wells by modeling filtration processes based on a combined finite-element-difference method. The practical significance of the research results comes down to confirming the close relationship between the heterogeneity of the porous medium and the reservoir pressures distribution around an operating producing well. The combined finite-element-difference method used in this work can be used to solve other filtration problems (for example, to calculate the gas saturation of a reservoir, create a method for calculating well flow rates, assess the effect of injection wells on filtration processes).


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 5) ◽  
Author(s):  
Jian Shen ◽  
Mingtao Chen ◽  
Shengtao Li ◽  
Zhenpeng Cui ◽  
Yilong Yuan ◽  
...  

Abstract The development of sandstone-type geothermal energy is an important part of the development of geothermal resources and has great significance in promoting environmental protection and energy structural transformation. In sandstone geothermal energy development, recharging is the main method to ensure bottom hole pressure. However, the pressure and temperature changes of sandstone reservoirs under recharge conditions have not been extensively studied. It is easy to ignore the hydraulic relationship between the production and the injection wells, which leads to an increased risk of thermal breakthrough. Therefore, a three-dimensional hydrothermal coupling model is established, and simulation studies of different flow rates, well lengths, and well spacings are completed in this paper. Here, we show the numerical simulation results. The low temperature expansion zone and hydrostatic pressure near the injection well increase with increasing flow rate, and the maximum expansion of the low temperature zone is about 350 m. The low temperature expansion area near the injection well has a small relationship with the well spacing, and the increase in hydrostatic pressure is proportional to the well spacing. As the length of the well increases, the increase in hydrostatic pressure near the injection well decreases, indicating that the injected water under the long well section easily enters the reservoir. When no thermal breakthrough occurs and the hydrostatic pressure drops significantly near the production well, it is recommended that the flow rate be controlled at approximately 20–25 L/s, the well spacing should be 600–800 m, and the well length should be greater than 100 m.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8604
Author(s):  
Katarzyna Luboń

An analysis of the influence of injection well location on CO2 storage efficiency was carried out for three well-known geological structures (traps) in deep aquifers of the Lower Jurassic Polish Lowlands. Geological models of the structures were used to simulate CO2 injection at fifty different injection well locations. A computer simulation showed that the dynamic CO2 storage capacity varies depending on the injection well location. It was found that the CO2 storage efficiency for structures with good reservoir properties increases with increasing distance of the injection well from the top of the structure and with increasing depth difference to the top of the structure. The opposite is true for a structure with poor reservoir properties. As the quality of the petrophysical reservoir parameters (porosity and permeability) improves, the location of the injection well becomes more important when assessing the CO2 storage efficiency. Maps of dynamic CO2 storage capacity and CO2 storage efficiency are interesting tools to determine the best location of a carbon dioxide injection well in terms of gas storage capacity.


2021 ◽  
Author(s):  
Sultan Ibrahim Al Shemaili ◽  
Ahmed Mohamed Fawzy ◽  
Elamari Assreti ◽  
Mohamed El Maghraby ◽  
Mojtaba Moradi ◽  
...  

Abstract Several techniques have been applied to improve the water conformance of injection wells to eventually improve field oil recovery. Standalone Passive flow control devices or these devices combined with Sliding sleeves have been successful to improve the conformance in the wells, however, they may fail to provide the required performance in the reservoirs with complex/dynamic properties including propagating/dilating fractures or faults and may also require intervention. This is mainly because the continuously increasing contrast in the injectivity of a section with the feature compared to the rest of the well causes diverting a great portion of the injected fluid into the thief zone which ultimately creates short-circuit to the nearby producer wells. The new autonomous injection device overcomes this issue by selectively choking the injection of fluid into the growing fractures crossing the well. Once a predefined upper flowrate limit is reached at the zone, the valves autonomously close. Well A has been injecting water into reservoir B for several years. It has been recognised from the surveys that the well passes through two major faults and the other two features/fractures with huge uncertainty around their properties. The use of the autonomous valve was considered the best solution to control the water conformance in this well. The device initially operates as a normal passive outflow control valve, and if the injected flowrate flowing through the valve exceeds a designed limit, the device will automatically shut off. This provides the advantage of controlling the faults and fractures in case they were highly conductive as compared to other sections of the well and also once these zones are closed, the device enables the fluid to be distributed to other sections of the well, thereby improving the overall injection conformance. A comprehensive study was performed to change the existing dual completion to a single completion and determine the optimum completion design for delivering the targeted rate for the well while taking into account the huge uncertainty around the faults and features properties. The retrofitted completion including 9 joints with Autonomous valves and 5 joints with Bypass ICD valves were installed in the horizontal section of the well in six compartments separated with five swell packers. The completion was installed in mid-2020 and the well has been on the injection since September 2020. The well performance outcomes show that new completion has successfully delivered the target rate. Also, the data from a PLT survey performed in Feb 2021 shows that the valves have successfully minimised the outflow toward the faults and fractures. This allows achieving the optimised well performance autonomously as the impacts of thief zones on the injected fluid conformance is mitigated and a balanced-prescribed injection distribution is maintained. This paper presents the results from one of the early installations of the valves in a water injection well in the Middle East for ADNOC onshore. The paper discusses the applied completion design workflow as well as some field performance and PLT data.


2021 ◽  
Author(s):  
Sheldon Peter Anthony Seales ◽  
Ahmed Rashed Alaleeli ◽  
Jan Erik Tveteraas ◽  
Daniel Martin Roberts ◽  
Glenn Aasland ◽  
...  

Abstract Objectives/Scope This paper outlines a new and innovative technology for brine recovery after the displacement of Reservoir Drill-In Fluid Non-Aqueous Fluid (RDF NAF) to Completion Brine and the associated operational, logistical, environmental and economic benefits associated with it. A unique slop treatment technology has been utilized to recover and reuse more than 2,168 bbl per well of expensive contaminated completion fluid to help manage losses and avoid injecting valuable completion fluid into operator's injection well. This has also resulted in reducing impact to the life of the injection well and burden on formation, thereby minimizing impact to subsurface environment and contributing to lower well cost. Methods, Procedures, Process The contaminated brine was transferred from the displacement of RDF NAF to brine and processed using a novel slop treatment technology to reduce the NTU and TSS to completion brine specifications required for completion operations. After displacing the well from RDF NAF to brine, typical contaminants would be RDF NAF and hi-vis spacer (water-based). The oil-contaminated brine was usually transferred to the tanks of the cuttings treatment contractor, treated and injected into the operator's cuttings re-injection (CRI) well. The new procedure isolated the contaminated brine to be processed through the slop treatment technology to separate and remove the oil and solids from the brine. The slop treatment involved passing the contaminated fluid through a decanter, solids particulate filter, three-phase separator and then a polishing filter to process the fluid to the required NTU and TSS specifications. Results, Observations, Conclusions The slops treatment unit was implemented for brine processing in 2020 and since then, the solution has achieved desirable operational, logistical, sub-surface environmental and cost related benefits. 2,168 bbl of expensive, contaminated completion brine has been processed per well, for subsequent reuse in the completion operations. Utilization and implementation of this mechanical process, versus the historical filter press process, at the source has had clear tangible savings that can be achieved in all areas of the operation, due to the capability to process oil-contaminated brine at a higher clarity and also the viscous brine at a faster rate. This new processing strategy allowed the operator to set new standards with regards to the recovery of oil-contaminated brine, in the UAE. Novel/Additive Information This is the first successful processing of oil-contaminated brine to be completed in the UAE utilizing a mechanical technology. This process has established new baselines for the operator to be able to recover oil-contaminated brine. By adapting the existing site-based slop treatment technology, this solution has bridged a gap in the market by using a novel mechanical process to optimize oil-contaminated brine recovery efficiency and maximize returns for operators.


2021 ◽  
Author(s):  
◽  
Chet Hopp

<p>In this thesis, we construct a four-year (2012–2015) catalog of microearthquakes for the Ngatamariki and Rotokawa geothermal fields in the Taupō Volcanic Zone of New Zealand, and use these data to improve the knowledge of reservoir behavior. These microearthquakes occur frequently, often every few seconds, and therefore provide a tool that we use to assess reservoir properties with dense spatial and temporal resolution as well as to illuminate the underlying processes of seismogenesis. Using a matched-filter detection technique we detect and precisely relocate nearly 9000 events, from which we calculate 982 focal mechanisms.  At Ngatamariki, these results constitute the first detailed analysis of seismicity at a newly-developed resource. It has been commonly assumed that induced shear on fractures increases reservoir permeability by offsetting asperities on either fracture wall, thereby propping the fracture open. During stimulation treatments of two boreholes (NM08 and NM09), borehole permeability experiences logarithmic growth. At NM08, this growth occurs for eight days in the absence of seismicity, while at NM09 only nine microearthquakes are observed during the one-month treatment. This suggests that hydro-shear, the process of inducing seismicity through increased pore pressure at critically-stressed fractures, is not the dominant mechanism of permeability increase at many geothermal wells. Instead, aseismic processes, likely thermal and overpressure induced fracture opening, dominate well stimulation in high-temperature geothermal settings.  At Rotokawa, the earthquake frequency-magnitude distribution (b-value) is positively correlated with both proximity to major injection wells and depth. In an inferred pressure compartment near injection well RK23, b is ~1.18, but is <1.0 elsewhere, suggesting a connection between increased pore-fluid pressure and small-magnitude events. In addition, throughout the reservoir b increases from a value of ~1.0 at injection depth to almost 1.5 two kilometers below the reservoir, consistent with observations at volcanic areas elsewhere, but opposing the conventional wisdom that b-value is inversely proportional to differential stress.  Finally, the 982 focal mechanism observations that we invert for stress show a normal faulting regime throughout both reservoirs. At Rotokawa, a lowering stress ratio, v, after reintroduction of injection well RK23 (v drops from 0.9 to 0.2 over six months) indicates that anisotropic reservoir cooling affects the reservoir stress state through a process of preferential stress reduction.</p>


2021 ◽  
Author(s):  
◽  
Chet Hopp

<p>In this thesis, we construct a four-year (2012–2015) catalog of microearthquakes for the Ngatamariki and Rotokawa geothermal fields in the Taupō Volcanic Zone of New Zealand, and use these data to improve the knowledge of reservoir behavior. These microearthquakes occur frequently, often every few seconds, and therefore provide a tool that we use to assess reservoir properties with dense spatial and temporal resolution as well as to illuminate the underlying processes of seismogenesis. Using a matched-filter detection technique we detect and precisely relocate nearly 9000 events, from which we calculate 982 focal mechanisms.  At Ngatamariki, these results constitute the first detailed analysis of seismicity at a newly-developed resource. It has been commonly assumed that induced shear on fractures increases reservoir permeability by offsetting asperities on either fracture wall, thereby propping the fracture open. During stimulation treatments of two boreholes (NM08 and NM09), borehole permeability experiences logarithmic growth. At NM08, this growth occurs for eight days in the absence of seismicity, while at NM09 only nine microearthquakes are observed during the one-month treatment. This suggests that hydro-shear, the process of inducing seismicity through increased pore pressure at critically-stressed fractures, is not the dominant mechanism of permeability increase at many geothermal wells. Instead, aseismic processes, likely thermal and overpressure induced fracture opening, dominate well stimulation in high-temperature geothermal settings.  At Rotokawa, the earthquake frequency-magnitude distribution (b-value) is positively correlated with both proximity to major injection wells and depth. In an inferred pressure compartment near injection well RK23, b is ~1.18, but is <1.0 elsewhere, suggesting a connection between increased pore-fluid pressure and small-magnitude events. In addition, throughout the reservoir b increases from a value of ~1.0 at injection depth to almost 1.5 two kilometers below the reservoir, consistent with observations at volcanic areas elsewhere, but opposing the conventional wisdom that b-value is inversely proportional to differential stress.  Finally, the 982 focal mechanism observations that we invert for stress show a normal faulting regime throughout both reservoirs. At Rotokawa, a lowering stress ratio, v, after reintroduction of injection well RK23 (v drops from 0.9 to 0.2 over six months) indicates that anisotropic reservoir cooling affects the reservoir stress state through a process of preferential stress reduction.</p>


2021 ◽  
Author(s):  
◽  
Gabriel Matson

<p>The high-temperature, fluid-dominated Ngatamariki geothermal field is located in the central Taupo Volcanic Zone, North Island, New Zealand, and is used to generate electricity via an 82 MW power plant. Injection wells have been in operation since June 2012. During June and July 2012, injection well NM8 was injected with with cold water in order to improve reservoir permeability. Geothermal stimulation and production may trigger microearthquakes by fluid flow through the reservoir. Close clustering of microseismic events’ hypocentres relative to the source-receiver distance results in many events having similar waveforms. We capitalize on this relationship by using a matched-filter detection method in which high-quality seismograms corresponding to a well-recorded earthquake (“templates”) are cross-correlated against continuous data to reveal additional earthquakes with similar characteristics. Clustering of the detections’ hypocenters also implies that small variations in travel times between two events corresponds to small differences in hypocentral locations, which is the foundation of the double-difference relocation method.  Using an 11 station seismic network, we detect 863 events via cross-correlation of 110 matched-filter templates during the two months stimulation testing. We locate each of these detections using a double-difference relocation method by which events are relocated based on relative travel times. The locatable seismicity delineates: a northern Ngatamariki cluster, a southern Ngatamariki cluster, and a cluster to the south, at the neighboring Rotokawa field. Seismicity in the northern Ngatamariki cluster (522 events) is of greatest interest for this project due to its proximity to well NM8 and temporal signature relative to injection. The seismicity cluster centers around well NM8 at a depth of 2.1 km below sea level. Events in this cluster extend to up to 2.5 km from the injection well. An increase in seismicity near NM8 lags behind the onset of injection by 4–8 days. In contrast, a seismicity-rate decrease coincides with injection shut-in without any time lag. Local magnitudes in this cluster span the range −0.09 ≤ Ml ≤ 1.66 with a completeness magnitude of 0.25. Seismicity within 200 m of NM8 is induced by thermal stresses caused by the difference in temperature between the injectate and the reservoir. Seismicity further than 200 m, but still within this cluster, from NM8 is induced via pore fluid pressure increases from the injected fluid. The coupled mechanism acts on two different length scales and is known as a thermoporoelastic mechanism. The matched-filter detection of microseismic events allows interpretation of extent of injection well stimulation and the relationship between injection and seismicity.</p>


2021 ◽  
Author(s):  
◽  
Gabriel Matson

<p>The high-temperature, fluid-dominated Ngatamariki geothermal field is located in the central Taupo Volcanic Zone, North Island, New Zealand, and is used to generate electricity via an 82 MW power plant. Injection wells have been in operation since June 2012. During June and July 2012, injection well NM8 was injected with with cold water in order to improve reservoir permeability. Geothermal stimulation and production may trigger microearthquakes by fluid flow through the reservoir. Close clustering of microseismic events’ hypocentres relative to the source-receiver distance results in many events having similar waveforms. We capitalize on this relationship by using a matched-filter detection method in which high-quality seismograms corresponding to a well-recorded earthquake (“templates”) are cross-correlated against continuous data to reveal additional earthquakes with similar characteristics. Clustering of the detections’ hypocenters also implies that small variations in travel times between two events corresponds to small differences in hypocentral locations, which is the foundation of the double-difference relocation method.  Using an 11 station seismic network, we detect 863 events via cross-correlation of 110 matched-filter templates during the two months stimulation testing. We locate each of these detections using a double-difference relocation method by which events are relocated based on relative travel times. The locatable seismicity delineates: a northern Ngatamariki cluster, a southern Ngatamariki cluster, and a cluster to the south, at the neighboring Rotokawa field. Seismicity in the northern Ngatamariki cluster (522 events) is of greatest interest for this project due to its proximity to well NM8 and temporal signature relative to injection. The seismicity cluster centers around well NM8 at a depth of 2.1 km below sea level. Events in this cluster extend to up to 2.5 km from the injection well. An increase in seismicity near NM8 lags behind the onset of injection by 4–8 days. In contrast, a seismicity-rate decrease coincides with injection shut-in without any time lag. Local magnitudes in this cluster span the range −0.09 ≤ Ml ≤ 1.66 with a completeness magnitude of 0.25. Seismicity within 200 m of NM8 is induced by thermal stresses caused by the difference in temperature between the injectate and the reservoir. Seismicity further than 200 m, but still within this cluster, from NM8 is induced via pore fluid pressure increases from the injected fluid. The coupled mechanism acts on two different length scales and is known as a thermoporoelastic mechanism. The matched-filter detection of microseismic events allows interpretation of extent of injection well stimulation and the relationship between injection and seismicity.</p>


2021 ◽  
Author(s):  
Sattiyaraju Sellapan ◽  
M Shahril Majid Allapitchai ◽  
Ahmad Luqman Johan ◽  
El Khalil Mohamed M’Bareck Heboul ◽  
William Sin Yoong Liew ◽  
...  

Abstract Operator's Wells Abandonment & Decommissioning campaign consists of 15 Deepwater subsea wells in Field "C" offshore West Africa. Discovered in 2001, the field is located approximately 80 km west of coastline and about 90 km from Nouakchott, capital of Mauritania. Field "C" is a deepwater field in water depth ranging from 730m to 830m. The field was developed using subsea wells, Hinged Over Subsea Templates (HOST), manifolds, flexible flowlines, umbilicals, and risers tied back to a permanently moored FPSO. In total, the field consists of nine (9) oil producer wells and five (5) water injection wells. During the development stage, one (1) gas injection well was drilled and completed at adjacent Field "B" about 17 km Northeast of Field "C". The water depth at this gas injection well location is approximately 280m. Field "C" reached maturity in 2016. Due to high operating costs, declining production coupled with declining oil prices, the decision was made to cease production, plug and abandon (P&A) and decommission the field. Two phases strategy was engaged by the Operator in order to complete the decommissioning and abandonment of Field "C". In Phase 1, which was executed back in the year of 2017-2018, all the 15 deep water subsea wells were temporarily suspended with two (2) barriers in place. The Floating, Production, Storage and Offloading (FPSO) unit was decommissioned and disconnected. In line with the strategy of dividing the project into two phases, the information on well integrity and conditions acquired during the Phase 1 Temporary Wells Suspension (TWS) was used by the Operator in planning for Phase 2 – Wells Plug and Abandonment (P&A). The operator made full use of temporary well suspension period between Phase 1 and Phase 2 for engineering, procurement, and operations preparation. The same drillship was utilized for the project in both phases. Multiple optimizations and modifications were done on the drillship based on lessons learned in Phase 1 and to cater for the subsea Xmas Tree and subsea structures retrieval in Phase 2. Due to the nature of the remote location and no existing oil & gas operations support base, all equipment required in this project was sent to Mauritania early. Equipment inspection and acceptance were carried out in Mauritania as part of the strategy in ensuring the availability of good quality equipment for offshore operations. The operations on Wells Plug & Abandonment commenced in December 2019. In March 2020, upon declaration of the COVID-19 pandemic, operator was faced with difficulty of continuing operation as the Host Country activated border lockdown. The operator managed to continue operations for remaining well and demobilized drillship and personnel safely. Operator has successfully retrieved three (3) subsea Xmas Trees, P&A three (3) wells and intervened six (6) other wells for tubing cutting before operations was suspended due to COVID-19 pandemic. Operator used the suspension phase to devise a methodology to resume operation in the prevailing COVID-19 pandemic situation. The challenges faced during the COVID-19 pandemic as well as the steps taken for resumption are highlighted in this paper. It is expected that this paper will serve as guidance in highlighting challenges and efforts taken to resume operation in the event of unforeseen suspension due to any reasons. It is also hoped that the details shared in this paper can assist other Operators in better operation planning for remote locations.


Sign in / Sign up

Export Citation Format

Share Document