scholarly journals Thin silicon solar cells: Pathway to cost-effective and defect-tolerant cell design

2017 ◽  
Vol 124 ◽  
pp. 706-711 ◽  
Author(s):  
André Augusto ◽  
Erin Looney ◽  
Carlos del Cañizo ◽  
Stuart G. Bowden ◽  
Tonio Buonassisi
Solar Energy ◽  
2013 ◽  
Vol 97 ◽  
pp. 591-595 ◽  
Author(s):  
C. Banerjee ◽  
T. Srikanth ◽  
U. Basavaraju ◽  
R.M. Tomy ◽  
M.G. Sreenivasan ◽  
...  

2017 ◽  
Vol 56 (47) ◽  
pp. 15078-15082 ◽  
Author(s):  
Xiao Yang ◽  
Li Ji ◽  
Xingli Zou ◽  
Taeho Lim ◽  
Ji Zhao ◽  
...  

Author(s):  
Nirag Kadakia

Recently, surface plasmons have been employed in a variety of methods to increase the efficiency of solar cells. Surface plasmons are oscillations of electrons that arise from surface effects of light interaction with materials that have appreciable free carrier densities; their resonance is confined to a region that depends on the dielectric response of the medium. It has been observed that noble metals exhibit this resonance within visible- near IR range, making them an attractive candidate for silicon solar cells whose primary absorption bands are in this region. Research in silicon-based plasmonic solar cells has utilized the high scattering cross section and favorable angular distributions of noble metal nanoparticle-scattered radiation to increase absorption of thin silicon devices, which are normally weakly absorbing for photons of energy below 2 eV. The interaction is subject to interface effects, interferences of scattered and incident radiation, and the dielectric nature of the embedding medium or surface. In addition, perturbations caused by the longitudinal field of the metal nanoparticle may theoretically enhance the direct interband transitions of free carriers near the particle surface, further enhancing the photocurrent. This latter possibility has yet to be fully explored experimentally in crystalline silicon photovoltaics.


Author(s):  
Michael Mauk ◽  
Paul Sims ◽  
James Rand ◽  
Allen Barnett

2020 ◽  
Vol 22 (5) ◽  
pp. 1187-1198
Author(s):  
Swapana S. Jerpoth ◽  
Joseph Iannello ◽  
Emmanuel A. Aboagye ◽  
Kirti M. Yenkie

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Enyu Wang ◽  
He Wang ◽  
Hong Yang

At present, the improvement in performance and the reduction of cost for crystalline silicon solar cells are a key for photovoltaic industry. Passivated emitter and rear cells are the most promising technology for next-generation commercial solar cells. The efficiency gains of passivated emitter and rear cells obtained on monocrystalline silicon wafer and multicrystalline silicon wafer are different. People are puzzled as to how to develop next-generation industrial cells. In this paper, both monocrystalline and multicrystalline silicon solar cells for commercial applications with passivated emitter and rear cells structure were fabricated by using cost-effective process. It was found that passivated emitter and rear cells are more effective for monocrystalline silicon solar cells than for multicrystalline silicon solar cells. This study gives some hints about the industrial-scale mass production of passivated emitter and rear cells process.


Sign in / Sign up

Export Citation Format

Share Document