Development of n-μc-SiOx:H as cost effective back reflector and its application to thin film amorphous silicon solar cells

Solar Energy ◽  
2013 ◽  
Vol 97 ◽  
pp. 591-595 ◽  
Author(s):  
C. Banerjee ◽  
T. Srikanth ◽  
U. Basavaraju ◽  
R.M. Tomy ◽  
M.G. Sreenivasan ◽  
...  
2006 ◽  
Vol 910 ◽  
Author(s):  
Janez Krc ◽  
M. Zeman ◽  
A. Campa ◽  
F. Smole ◽  
M. Topic

AbstractIn order to improve light trapping in thin-film silicon solar cells two novel approaches are investigated in this article: angle-selective management of light scattering inside the solar cell and wavelength-selective manipulation of high reflectance or transmittance of light. Diffraction gratings are analyzed as a representative of the first approach. Haze and angular distribution function of scattered (diffracted) light in reflection are measured for aluminum-based rectangular periodic gratings with different period and height of the rectangles. High haze values in specific wavelength region and scattering angles of the investigated gratings measured in air and water agree very well with the theoretical predictions. Considering the actual optical situation in microcrystalline silicon solar cells, optimal period and height of the rectangular gratings applied as a back reflector are calculated for obtaining the total reflection at the front interfaces. In the frame of the second approach, photonic-crystal-like structures are introduced. By means of optical simulations photonic-crystal-like structures are investigated for two possible applications: an intermediate reflector in a micromorph silicon solar cell with wavelength-selective reflectivity and a dielectric back reflector with a high reflectance in the long-wavelength region. The photonic crystal structure consisting of sequences of n-doped amorphous silicon and ZnO layers is designed for the efficient intermediate reflector. For the back reflector with a high reflectance the structures with intrinsic amorphous silicon, SiO2, MgF2 and TiO2 are proposed.


2010 ◽  
Vol 1248 ◽  
Author(s):  
Benjamin Curtin ◽  
Rana Biswas ◽  
Vikram Dalal

AbstractWe develop experimentally and theoretically plasmonic and photonic crystals for enhancing thin film silicon solar cells. Thin film amorphous silicon (a-Si:H) solar cells suffer from decreased absorption of red and near-infrared photons, where the photon absorption length is large. Simulations predict maximal light absorption for a pitch of 700-800 nm for photonic crystal hole arrays in silver or ZnO/Ag back reflectors, with absorption increases of ~12%. The photonic crystal improves over the ideal randomly roughened back reflector (or the ‘4n2limit’) at wavelengths near the band edge. We fabricated metallic photonic crystal back-reflectors using photolithography and reactive-ion etching. We conformally deposited a-Si:H solar cells on triangular lattice hole arrays of pitch 760 nm on silver back-reflectors. Electron microscopy demonstrates excellent long range periodicity and conformal a-Si:H growth. The measured quantum efficiency increases by 7-8 %, relative to a flat reflector reference device, with enhancement factors exceeding 6 at near-infrared wavelengths. The photonic crystal back reflector strongly diffracts light and increases optical path lengths of solar photons.


2018 ◽  
Vol 29 (10) ◽  
pp. 105404 ◽  
Author(s):  
Pramod M Rajanna ◽  
Evgenia P Gilshteyn ◽  
Timur Yagafarov ◽  
Alena K Aleekseeva ◽  
Anton S Anisimov ◽  
...  

2020 ◽  
Vol 12 (23) ◽  
pp. 26184-26192 ◽  
Author(s):  
Shuangying Cao ◽  
Dongliang Yu ◽  
Yinyue Lin ◽  
Chi Zhang ◽  
Linfeng Lu ◽  
...  

1996 ◽  
Vol 426 ◽  
Author(s):  
Seung Jae Baik ◽  
Jinsoo Song ◽  
Koeng Su Lim

AbstractTo obtain high quality ZnO thin films for use as transparent electrodes of amorphous silicon solar cells, hydrogen treatment of the films using photo-chemical vapor deposition was performed for the first time. The as-deposited ZnO thin film was irradiated by UV light during the flow of hydrogen molecules in the presence of photo-sensitizers of mercury. As the treatment time increased, resistivity decreased from 1 × 10−2Ωcm to 2 × 10−3Ωcm. Moreover, haze ratio increased from 20% to 48%. Hydrogen radicals were thought to be playing various roles on the neighborhood of the surface region and the grain boundary region. This new trial gave us new understanding into the relation between hydrogen and ZnO. Moreover, these results could be applied to the process of amorphous silicon solar cells and a possible increase of efficiency is expected.


Sign in / Sign up

Export Citation Format

Share Document