scholarly journals Fly ash utilization for methane production improvement from co-digestion between cow dung and Pennisetum Purpureum

2021 ◽  
Vol 7 ◽  
pp. 591-598
Author(s):  
Vanatpornratt Sawasdee ◽  
Sasitorn Hasin ◽  
Nipon Pisutpaisal
2009 ◽  
Vol 6 (2) ◽  
pp. 511-517 ◽  
Author(s):  
S. Sarojini ◽  
S. Ananthakrishnasamy ◽  
G. Manimegala ◽  
M. Prakash ◽  
G. Gunasekaran

Fly ash is an amorphous ferroalumino silicate, an important solid waste around thermal power plants. It creates problems leading to environmental degradation due to improper utilization or disposal. However, fly ash is a useful ameliorant that may improve the physical, chemical and biological properties of soils and is a source of readily available plant macro and micronutrients when it is used with biosolids. Supply of nutrients from fly ash with biosolids may enhance their agricultural use. The growth and reproduction ofEisenia fetidawas studied during vermicomposting of fly ash with cowdung and pressmud in four different proportions (T1,T2,T3& T4) and one controli.e.,cow dung and pressmud alone. The growth, cocoon and hatchlings production were observed at the interval of 15 days over a period of 60 days. The maximum worm growth and reproduction was observed in bedding material alone. Next to that the T1was observed as the best mixture for vermiculture.


2013 ◽  
Vol 85 (6) ◽  
pp. 558-567 ◽  
Author(s):  
Bhavna A Shah ◽  
Ajay V Shah ◽  
Harendra D Patel ◽  
Chirag B Mistry

2017 ◽  
Vol 8 (2) ◽  
pp. 185 ◽  
Author(s):  
Jorge Rodolfo Canul Solis ◽  
Angel Trinidad Piñeiro Vázquez ◽  
Jeyderl Israe Arceo Castillo ◽  
José Alayón Alayón Gamboa ◽  
Armín Javier Ayala Burgos ◽  
...  

ABSTRACTRuminant animals contribute significantly to methane emissions in tropical regions. Nonetheless, there are few facilities available in those regions of the world for in vivo measurement of methane production in cattle. The aim of the present work was to describe the design, construction and operation of respiration chambers for in vivo measurement of methane production in cattle in Mexico. Locally available materials were used in the construction. Walls, roof and doors were constructed of thermic panels with two windows of acrylic at the front so the animal can be observed at all times. Chambers have an air volume of 9.97 m3. Air is drawn from the chamber at a rate of 500 L/min by the effect of mass action flow generators. Methane was measured in air samples with an infrared analyzer. Chambers operate under a slight negative pressure of around -500 Pa. Air temperature inside the chambers is kept at 23 °C with an air conditioner, while relative humidity is maintained at 55 % with a dehumidifier. Functioning of the chambers was evaluated in Bos indicus, Nelore cattle fed Taiwan grass (Pennisetum purpureum) and a concentrate (18 % crude protein), and measurements were made during runs of 23 h duration. Methane production was on average 173.2 L per day, while the emission factor was 17.48 L methane per kilogram o dry matter consumed. It concludes that this respiration facility is capable of measuring methane production accurately in cattle fed tropical rations.


2012 ◽  
Vol 15 (23) ◽  
pp. 1111-1118 ◽  
Author(s):  
Ajay Kumar Jha ◽  
Jianzheng Li ◽  
Qiaoying Ban ◽  
Liguo Zhang ◽  
Bowei Zhao

Fuel ◽  
2019 ◽  
Vol 246 ◽  
pp. 402-407 ◽  
Author(s):  
Yi Wang ◽  
Fang Hou ◽  
Huilin Xu ◽  
Jie Li ◽  
Chenkang Miao ◽  
...  

2011 ◽  
Vol 697-698 ◽  
pp. 326-330 ◽  
Author(s):  
S.X. Zhou ◽  
Y.P. Dong ◽  
Y.L. Zhang

Microbial pretreatment was applied to enhance biogas production from corn stover through solid-state anaerobic digestion, but the price of microbial strains is high. The objective of this study was to find the effects on biogas production by the naturally microbial pretreatment method. The highest cumulative biogas yield for 60-day solid-state anaerobic digestion was obtained in B group (the pretreated corn straws with cow dung), which was 19.6% higher than that of the untreated samples. The D group(the pretreated corn straws with the sludge)cumulative biogas yield for 60-day solid-state anaerobic digestion was obtained, which was 18.87% higher than that of the untreted samples. The biogas of D group increased to the range of 55%~60% methane content, while B group with the range of 75%~80%.The results indicated that the pretreated corn straws mixing cow manure can improve both the biogas production yield and the content of methane in CH4。


Sign in / Sign up

Export Citation Format

Share Document