scholarly journals Concepts of signed graph coloring

2021 ◽  
Vol 91 ◽  
pp. 103226
Author(s):  
Eckhard Steffen ◽  
Alexander Vogel
Keyword(s):  
2019 ◽  
Vol 49 (4) ◽  
pp. 1111-1122
Author(s):  
Brian Davis
Keyword(s):  

1982 ◽  
Vol 39 (2) ◽  
pp. 215-228 ◽  
Author(s):  
Thomas Zaslavsky
Keyword(s):  

10.37236/3636 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Benjamin Braun ◽  
Sarah Crown Rundell

Phil Hanlon proved that the coefficients of the chromatic polynomial of a graph $G$ are equal (up to sign) to the dimensions of the summands in a Hodge-type decomposition of the top homology of the coloring complex for $G$.  We prove a type B analogue of this result for chromatic polynomials of signed graphs using hyperoctahedral Eulerian idempotents.


10.37236/8478 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Clément Charpentier ◽  
Reza Naserasr ◽  
Éric Sopena

The notion of homomorphism of signed graphs, introduced quite recently, provides better interplay with the notion of minor and is thus of high importance in graph coloring. A newer, but equivalent, definition of homomorphisms of signed graphs, proposed jointly by the second and third authors of this paper and Thomas Zaslavsky, leads to a basic no-homomorphism lemma. According to this definition, a signed graph $(G, \sigma)$ admits a homomorphism to a signed graph $(H, \pi)$ if there is a mapping $\phi$ from the vertices and edges of $G$ to the vertices and edges of $H$ (respectively) which preserves adjacencies, incidences, and signs of closed walks (i.e., the product of the sign of their edges).  For $ij=00, 01, 10, 11$, let $g_{ij}(G,\sigma)$ be the length of a shortest nontrivial closed walk of $(G, \sigma)$ which is, positive and of even length for $ij=00$, positive and of odd length for $ij=01$, negative and of even length for $ij=10$, negative and of odd length for $ij=11$. For each $ij$, if there is no nontrivial closed walk of the corresponding type, we let $g_{ij}(G, \sigma)=\infty$. If $G$ is bipartite, then $g_{01}(G,\sigma)=g_{11}(G,\sigma)=\infty$. In this case, $g_{10}(G,\sigma)$ is certainly realized by a cycle of $G$, and it will be referred to as the \emph{unbalanced-girth} of $(G,\sigma)$. It then follows that if $(G,\sigma)$ admits a homomorphism to $(H, \pi)$, then $g_{ij}(G, \sigma)\geq g_{ij}(H, \pi)$ for $ij \in \{00, 01,10,11\}$. Studying the restriction of homomorphisms of signed graphs on sparse families, in this paper we first prove that for any given signed graph $(H, \pi)$, there exists a positive value of $\epsilon$ such that, if $G$ is a connected graph of maximum average degree less than $2+\epsilon$, and if $\sigma$ is a signature of $G$ such that $g_{ij}(G, \sigma)\geq g_{ij}(H, \pi)$ for all $ij \in \{00, 01,10,11\}$, then $(G, \sigma)$ admits a homomorphism to $(H, \pi)$. For $(H, \pi)$ being the signed graph on $K_4$ with exactly one negative edge, we show that $\epsilon=\frac{4}{7}$ works and that this is the best possible value of $\epsilon$. For $(H, \pi)$ being the negative cycle of length $2g$, denoted $UC_{2g}$, we show that $\epsilon=\frac{1}{2g-1}$ works.  As a bipartite analogue of the Jaeger-Zhang conjecture, Naserasr, Sopena and Rollovà conjectured in [Homomorphisms of signed graphs, {\em J. Graph Theory} 79 (2015)] that every signed bipartite planar graph $(G,\sigma)$ satisfying $g_{ij}(G,\sigma)\geq 4g-2$ admits a homomorphism to $UC_{2g}$. We show that $4g-2$ cannot be strengthened, and, supporting the conjecture, we prove it for planar signed bipartite graphs $(G,\sigma)$ satisfying the weaker condition $g_{ij}(G,\sigma)\geq 8g-2$. In the course of our work, we also provide a duality theorem to decide whether a 2-edge-colored graph admits a homomorphism to a certain class of 2-edge-colored signed graphs or not.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hongyan Li ◽  
Xianfeng Ding ◽  
Jiang Lin ◽  
Jingyu Zhou

Abstract With the development of economy, more and more people travel by plane. Many airports have added satellite halls to relieve the pressure of insufficient boarding gates in airport terminals. However, the addition of satellite halls will have a certain impact on connecting flights of transit passengers and increase the difficulty of reasonable allocation of flight and gate in airports. Based on the requirements and data of question F of the 2018 postgraduate mathematical contest in modeling, this paper studies the flight-gate allocation of additional satellite halls at airports. Firstly, match the seven types of flights with the ten types of gates. Secondly, considering the number of gates used and the least number of flights not allocated to the gate, and adding the two factors of the overall tension of passengers and the minimum number of passengers who failed to transfer, the multi-objective 0–1 programming model was established. Determine the weight vector $w=(0.112,0.097,0.496,0.395)$ w = ( 0.112 , 0.097 , 0.496 , 0.395 ) of objective function by entropy value method based on personal preference, then the multi-objective 0–1 programming model is transformed into single-objective 0–1 programming model. Finally, a graph coloring algorithm based on parameter adjustment is used to solve the transformed model. The concept of time slice was used to determine the set of time conflicts of flight slots, and the vertex sequences were colored by applying the principle of “first come first serve”. Applying the model and algorithm proposed in this paper, it can be obtained that the average value of the overall tension degree of passengers minimized in question F is 35.179%, the number of flights successfully allocated to the gate maximized is 262, and the number of gates used is minimized to be 60. The corresponding flight-gate difficulty allocation weight is $\alpha =0.32$ α = 0.32 and $\beta =0.40$ β = 0.40 , and the proportion of flights successfully assigned to the gate is 86.469%. The number of passengers who failed to transfer was 642, with a failure rate of 23.337%.


2021 ◽  
Vol 9 (1) ◽  
pp. 19-21
Author(s):  
Zoran Stanić

Abstract We derive an inequality that includes the largest eigenvalue of the adjacency matrix and walks of an arbitrary length of a signed graph. We also consider certain particular cases.


2002 ◽  
Vol 37 (7) ◽  
pp. 130-138 ◽  
Author(s):  
Jeonghun Cho ◽  
Yunheung Paek ◽  
David Whalley
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document