scholarly journals Homomorphisms of Sparse Signed Graphs

10.37236/8478 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Clément Charpentier ◽  
Reza Naserasr ◽  
Éric Sopena

The notion of homomorphism of signed graphs, introduced quite recently, provides better interplay with the notion of minor and is thus of high importance in graph coloring. A newer, but equivalent, definition of homomorphisms of signed graphs, proposed jointly by the second and third authors of this paper and Thomas Zaslavsky, leads to a basic no-homomorphism lemma. According to this definition, a signed graph $(G, \sigma)$ admits a homomorphism to a signed graph $(H, \pi)$ if there is a mapping $\phi$ from the vertices and edges of $G$ to the vertices and edges of $H$ (respectively) which preserves adjacencies, incidences, and signs of closed walks (i.e., the product of the sign of their edges).  For $ij=00, 01, 10, 11$, let $g_{ij}(G,\sigma)$ be the length of a shortest nontrivial closed walk of $(G, \sigma)$ which is, positive and of even length for $ij=00$, positive and of odd length for $ij=01$, negative and of even length for $ij=10$, negative and of odd length for $ij=11$. For each $ij$, if there is no nontrivial closed walk of the corresponding type, we let $g_{ij}(G, \sigma)=\infty$. If $G$ is bipartite, then $g_{01}(G,\sigma)=g_{11}(G,\sigma)=\infty$. In this case, $g_{10}(G,\sigma)$ is certainly realized by a cycle of $G$, and it will be referred to as the \emph{unbalanced-girth} of $(G,\sigma)$. It then follows that if $(G,\sigma)$ admits a homomorphism to $(H, \pi)$, then $g_{ij}(G, \sigma)\geq g_{ij}(H, \pi)$ for $ij \in \{00, 01,10,11\}$. Studying the restriction of homomorphisms of signed graphs on sparse families, in this paper we first prove that for any given signed graph $(H, \pi)$, there exists a positive value of $\epsilon$ such that, if $G$ is a connected graph of maximum average degree less than $2+\epsilon$, and if $\sigma$ is a signature of $G$ such that $g_{ij}(G, \sigma)\geq g_{ij}(H, \pi)$ for all $ij \in \{00, 01,10,11\}$, then $(G, \sigma)$ admits a homomorphism to $(H, \pi)$. For $(H, \pi)$ being the signed graph on $K_4$ with exactly one negative edge, we show that $\epsilon=\frac{4}{7}$ works and that this is the best possible value of $\epsilon$. For $(H, \pi)$ being the negative cycle of length $2g$, denoted $UC_{2g}$, we show that $\epsilon=\frac{1}{2g-1}$ works.  As a bipartite analogue of the Jaeger-Zhang conjecture, Naserasr, Sopena and Rollovà conjectured in [Homomorphisms of signed graphs, {\em J. Graph Theory} 79 (2015)] that every signed bipartite planar graph $(G,\sigma)$ satisfying $g_{ij}(G,\sigma)\geq 4g-2$ admits a homomorphism to $UC_{2g}$. We show that $4g-2$ cannot be strengthened, and, supporting the conjecture, we prove it for planar signed bipartite graphs $(G,\sigma)$ satisfying the weaker condition $g_{ij}(G,\sigma)\geq 8g-2$. In the course of our work, we also provide a duality theorem to decide whether a 2-edge-colored graph admits a homomorphism to a certain class of 2-edge-colored signed graphs or not.

2012 ◽  
Vol 11 (4) ◽  
pp. 1-14
Author(s):  
Deepa Sinha ◽  
Ayushi Dhama

A signed graph (or sigraph in short) is an ordered pair S = (Su, σ), where Su is a graph G = (V, E), called the underlying graph of S and σ : E → {+1, −1} is a function from the edge set E of Su into the set {+1, −1}, called the signature of S. A sigraph S is sign-compatible if there exists a marking µ of its vertices such that the end vertices of every negative edge receive ‘−1’ marks in µ and no positive edge does so. In this paper, we characterize S such that its ×-line sigraphs, semi-total line sigraphs, semi-total point sigraphs and total sigraphs are sign-compatible.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1902
Author(s):  
Milica Anđelić ◽  
Tamara Koledin ◽  
Zoran Stanić

Balanced signed graphs appear in the context of social groups with symmetric relations between individuals where a positive edge represents friendship and a negative edge represents enmities between the individuals. The frustration number f of a signed graph is the size of the minimal set F of vertices whose removal results in a balanced signed graph; hence, a connected signed graph G˙ is balanced if and only if f=0. In this paper, we consider the balance of G˙ via the relationships between the frustration number and eigenvalues of the symmetric Laplacian matrix associated with G˙. It is known that a signed graph is balanced if and only if its least Laplacian eigenvalue μn is zero. We consider the inequalities that involve certain Laplacian eigenvalues, the frustration number f and some related invariants such as the cut size of F and its average vertex degree. In particular, we consider the interplay between μn and f.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Deepa Sinha ◽  
Deepakshi Sharma

A signed graph is a simple graph where each edge receives a sign positive or negative. Such graphs are mainly used in social sciences where individuals represent vertices friendly relation between them as a positive edge and enmity as a negative edge. In signed graphs, we define these relationships (edges) as of friendship (“+” edge) or hostility (“-” edge). A 2-path product signed graph S#^S of a signed graph S is defined as follows: the vertex set is the same as S and two vertices are adjacent if and only if there exists a path of length two between them in S. The sign of an edge is the product of marks of vertices in S where the mark of vertex u in S is the product of signs of all edges incident to the vertex. In this paper, we give a characterization of 2-path product signed graphs. Also, some other properties such as sign-compatibility and canonically-sign-compatibility of 2-path product signed graphs are discussed along with isomorphism and switching equivalence of this signed graph with 2-path signed graph.


10.37236/3636 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Benjamin Braun ◽  
Sarah Crown Rundell

Phil Hanlon proved that the coefficients of the chromatic polynomial of a graph $G$ are equal (up to sign) to the dimensions of the summands in a Hodge-type decomposition of the top homology of the coloring complex for $G$.  We prove a type B analogue of this result for chromatic polynomials of signed graphs using hyperoctahedral Eulerian idempotents.


10.37236/4938 ◽  
2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Edita Máčajová ◽  
André Raspaud ◽  
Martin Škoviera

In 1982, Zaslavsky introduced the concept of a proper vertex colouring of a signed graph $G$ as a mapping $\phi\colon V(G)\to \mathbb{Z}$ such that for any two adjacent vertices $u$ and $v$ the colour $\phi(u)$ is different from the colour $\sigma(uv)\phi(v)$, where is $\sigma(uv)$ is the sign of the edge $uv$. The substantial part of Zaslavsky's research concentrated on polynomial invariants related to signed graph colourings rather than on the behaviour of colourings of individual signed graphs. We continue the study of signed graph colourings by proposing the definition of a chromatic number for signed graphs which provides a natural extension of the chromatic number of an unsigned graph. We establish the basic properties of this invariant, provide bounds in terms of the chromatic number of the underlying unsigned graph, investigate the chromatic number of signed planar graphs, and prove an extension of the celebrated Brooks' theorem to signed graphs.


2021 ◽  
Vol 91 ◽  
pp. 103226
Author(s):  
Eckhard Steffen ◽  
Alexander Vogel
Keyword(s):  

Author(s):  
Lucas Rusnak ◽  
Jelena Tešić

AbstractAttitudinal network graphs are signed graphs where edges capture an expressed opinion; two vertices connected by an edge can be agreeable (positive) or antagonistic (negative). A signed graph is called balanced if each of its cycles includes an even number of negative edges. Balance is often characterized by the frustration index or by finding a single convergent balanced state of network consensus. In this paper, we propose to expand the measures of consensus from a single balanced state associated with the frustration index to the set of nearest balanced states. We introduce the frustration cloud as a set of all nearest balanced states and use a graph-balancing algorithm to find all nearest balanced states in a deterministic way. Computational concerns are addressed by measuring consensus probabilistically, and we introduce new vertex and edge metrics to quantify status, agreement, and influence. We also introduce a new global measure of controversy for a given signed graph and show that vertex status is a zero-sum game in the signed network. We propose an efficient scalable algorithm for calculating frustration cloud-based measures in social network and survey data of up to 80,000 vertices and half-a-million edges. We also demonstrate the power of the proposed approach to provide discriminant features for community discovery when compared to spectral clustering and to automatically identify dominant vertices and anomalous decisions in the network.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Qingyun Tao ◽  
Lixin Tao

The Laplacian energy of a signed graph is defined as the sum of the distance of its Laplacian eigenvalues from its average degree. Two signed graphs of the same order are said to be Laplacian equienergetic if their Laplacian energies are equal. In this paper, we present several infinite families of Laplacian equienergetic signed graphs.


Author(s):  
P. Jeyalakshmi ◽  
K. Karuppasamy ◽  
S. Arockiaraj

Let [Formula: see text] be a signed graph. A dominating set [Formula: see text] is said to be an independent dominating set of [Formula: see text] if [Formula: see text] is a fully negative. In this paper, we initiate a study of this parameter. We also establish the bounds and characterization on the independent domination number of a signed graph.


Author(s):  
P. Jeyalakshmi

Let [Formula: see text] be a graph. A signed graph is an ordered pair [Formula: see text] where [Formula: see text] is a graph called the underlying graph of [Formula: see text] and [Formula: see text] is a function called a signature or signing function. Motivated by the innovative paper of B. D. Acharya on domination in signed graphs, we consider another way of defining the concept of domination in signed graphs which looks more natural and has applications in social science. A subset [Formula: see text] of [Formula: see text] is called a dominating set of [Formula: see text] if [Formula: see text] for all [Formula: see text]. The domination number of [Formula: see text], denoted by [Formula: see text], is the minimum cardinality of a dominating set of [Formula: see text]. Also, a dominating set [Formula: see text] of [Formula: see text] with [Formula: see text] is called a [Formula: see text]-set of [Formula: see text]. In this paper, we initiate a study on this parameter.


Sign in / Sign up

Export Citation Format

Share Document