Nuclear Group I introns with homing endonuclease genes in Acanthamoeba genotype T4

2018 ◽  
Vol 66 ◽  
pp. 26-35 ◽  
Author(s):  
Daniele Corsaro ◽  
Danielle Venditti
2021 ◽  
Vol 7 (3) ◽  
pp. 43
Author(s):  
Betty M. N. Furulund ◽  
Bård O. Karlsen ◽  
Igor Babiak ◽  
Steinar D. Johansen

Nuclear group I introns are restricted to the ribosomal DNA locus where they interrupt genes for small subunit and large subunit ribosomal RNAs at conserved sites in some eukaryotic microorganisms. Here, the myxomycete protists are a frequent source of nuclear group I introns due to their unique life strategy and a billion years of separate evolution. The ribosomal DNA of the myxomycete Mucilago crustacea was investigated and found to contain seven group I introns, including a direct repeat-containing intron at insertion site S1389 in the small subunit ribosomal RNA gene. We collected, analyzed, and compared 72 S1389 group IC1 introns representing diverse myxomycete taxa. The consensus secondary structure revealed a conserved ribozyme core, but with surprising sequence variations in the guanosine binding site in segment P7. Some S1389 introns harbored large extension sequences in the peripheral region of segment P9 containing direct repeat arrays. These repeats contained up to 52 copies of a putative internal guide sequence motif. Other S1389 introns harbored homing endonuclease genes in segment P1 encoding His-Cys proteins. Homing endonuclease genes were further interrupted by small spliceosomal introns that have to be removed in order to generate the open reading frames. Phylogenetic analyses of S1389 intron and host gene indicated both vertical and horizontal intron transfer during evolution, and revealed sporadic appearances of direct repeats, homing endonuclease genes, and guanosine binding site variants among the myxomycete taxa.


2004 ◽  
Vol 21 (1) ◽  
pp. 129-140 ◽  
Author(s):  
Peik Haugen ◽  
Valérie Reeb ◽  
François Lutzoni ◽  
Debashish Bhattacharya

Mobile DNA ◽  
2013 ◽  
Vol 4 (1) ◽  
pp. 17 ◽  
Author(s):  
Annica Hedberg ◽  
Steinar D Johansen

1992 ◽  
Vol 22 (4) ◽  
pp. 297-304 ◽  
Author(s):  
Steinar Johansen ◽  
Terje Johansen ◽  
Finn Haugli

2005 ◽  
Vol 33 (3) ◽  
pp. 482-484 ◽  
Author(s):  
Å.B. Birgisdottir ◽  
S.D. Johansen

A mobile group I intron containing two ribozyme domains and a homing endonuclease gene (twin-ribozyme intron organization) can integrate by reverse splicing into the small subunit rRNA of bacteria and yeast. The integration is sequence-specific and corresponds to the natural insertion site (homing site) of the intron. The reverse splicing is independent of the homing endonuclease gene, but is dependent on the group I splicing ribozyme domain. The observed distribution of group I introns in nature can be explained by horizontal transfer between natural homing sites by reverse splicing and subsequent spread in populations by endonuclease-dependent homing.


2004 ◽  
Vol 186 (13) ◽  
pp. 4307-4314 ◽  
Author(s):  
Markus Landthaler ◽  
Nelson C. Lau ◽  
David. A. Shub

ABSTRACT Many group I introns encode endonucleases that promote intron homing by initiating a double-stranded break-mediated homologous recombination event. In this work we describe intron homing in Bacillus subtilis phages SPO1 and SP82. The introns encode the DNA endonucleases I-HmuI and I-HmuII, respectively, which belong to the H-N-H endonuclease family and possess nicking activity in vitro. Coinfections of B. subtilis with intron-minus and intron-plus phages indicate that I-HmuI and I-HmuII are required for homing of the SPO1 and SP82 introns, respectively. The homing process is a gene conversion event that does not require the major B. subtilis recombination pathways, suggesting that the necessary functions are provided by phage-encoded factors. Our results provide the first examples of H-N-H endonuclease-mediated intron homing and the first demonstration of intron homing initiated by a nicking endonuclease.


Sign in / Sign up

Export Citation Format

Share Document