Non-Coding RNA
Latest Publications


TOTAL DOCUMENTS

292
(FIVE YEARS 188)

H-INDEX

17
(FIVE YEARS 9)

Published By Mdpi Ag

2311-553x

2022 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Zhen Ye ◽  
Mai Mohamed Abdelmoaty ◽  
Stephen M. Curran ◽  
Shetty Ravi Dyavar ◽  
Devendra Kumar ◽  
...  

RNA interference (RNAi) molecules have tremendous potential for cancer therapy but are limited by insufficient potency after intravenous (IV) administration. We previously found that polymer complexes (polyplexes) formed between 3′-cholesterol-modified siRNA (Chol-siRNA) or DsiRNA (Chol-DsiRNA) and the cationic diblock copolymer PLL[30]-PEG[5K] greatly increase RNAi potency against stably expressed LUC mRNA in primary syngeneic murine breast tumors after daily IV dosing. Chol-DsiRNA polyplexes, however, maintain LUC mRNA suppression for ~48 h longer after the final dose than Chol-siRNA polyplexes, which suggests that they are the better candidate formulation. Here, we directly compared the activities of Chol-siRNA polyplexes and Chol-DsiRNA polyplexes in primary murine 4T1 breast tumors against STAT3, a therapeutically relevant target gene that is overexpressed in many solid tumors, including breast cancer. We found that Chol-siSTAT3 polyplexes suppressed STAT3 mRNA in 4T1 tumors with similar potency (half-maximal ED50 0.3 mg/kg) and kinetics (over 96 h) as Chol-DsiSTAT3 polyplexes, but with slightly lower activity against total Stat3 protein (29% vs. 42% suppression) and tumor growth (11.5% vs. 8.6% rate-based T/C ratio) after repeated IV administration of equimolar, tumor-saturating doses every other day. Thus, both Chol-siRNA polyplexes and Chol-DsiRNA polyplexes may be suitable clinical candidates for the RNAi therapy of breast cancer and other solid tumors.


2022 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Jin Zhang ◽  
Abdallah M. Eteleeb ◽  
Emily B. Rozycki ◽  
Matthew J. Inkman ◽  
Amy Ly ◽  
...  

Existing small noncoding RNA analysis tools are optimized for processing short sequencing reads (17–35 nucleotides) to monitor microRNA expression. However, these strategies under-represent many biologically relevant classes of small noncoding RNAs in the 36–200 nucleotides length range (tRNAs, snoRNAs, etc.). To address this, we developed DANSR, a tool for the detection of annotated and novel small RNAs using sequencing reads with variable lengths (ranging from 17–200 nt). While DANSR is broadly applicable to any small RNA dataset, we applied it to a cohort of matched normal, primary, and distant metastatic colorectal cancer specimens to demonstrate its ability to quantify annotated small RNAs, discover novel genes, and calculate differential expression. DANSR is available as an open source tool.


2022 ◽  
Vol 8 (1) ◽  
pp. 6
Author(s):  
Wei-Sheng Wu ◽  
Jordan S. Brown ◽  
Pin-Hao Chen ◽  
Sheng-Cian Shiue ◽  
Dong-En Lee ◽  
...  

Non-coding RNAs, such as miRNAs and piRNAs, play critical roles in gene regulation through base-pairing interactions with their target molecules. The recent development of the crosslinking, ligation, and sequencing of hybrids (CLASH) method has allowed scientists to map transcriptome-wide RNA–RNA interactions by identifying chimeric reads consisting of fragments from regulatory RNAs and their targets. However, analyzing CLASH data requires scientists to use advanced bioinformatics, and currently available tools are limited for users with little bioinformatic experience. In addition, many published CLASH studies do not show the full scope of RNA–RNA interactions that were captured, highlighting the importance of reanalyzing published data. Here, we present CLASH Analyst, a web server that can analyze raw CLASH data within a fully customizable and easy-to-use interface. CLASH Analyst accepts raw CLASH data as input and identifies the RNA chimeras containing the regulatory and target RNAs according to the user’s interest. Detailed annotation of the captured RNA–RNA interactions is then presented for the user to visualize within the server or download for further analysis. We demonstrate that CLASH Analyst can identify miRNA- and piRNA-targeting sites reported from published CLASH data and should be applicable to analyze other RNA–RNA interactions. CLASH Analyst is freely available for academic use.


2022 ◽  
Vol 8 (1) ◽  
pp. 7
Author(s):  
Hyung Chul Kim ◽  
Emmitt R. Jolly

Trypanosoma brucei is a parasitic protist that causes African sleeping sickness. The establishment of T. brucei cell lines has provided a significant advantage for the majority of T. brucei research. However, these cell lines were isolated and maintained in culture for decades, occasionally accumulating changes in gene expression. Since trypanosome strains have been maintained in culture for decades, it is possible that difference may have accumulated in fast-evolving non-coding RNAs between trypanosomes from the wild and those maintained extensively in cultures. To address this, we compared the lncRNA expression profile of trypanosomes maintained as cultured cell lines (CL) to those extracted from human patients, wildtype (WT). We identified lncRNAs from CL and WT from available transcriptomic data and demonstrate that CL and WT have unique sets of lncRNAs expressed. We further demonstrate that the unique and shared lncRNAs are differentially expressed between CL and WT parasites, and that these lncRNAs are more evenly up-regulated and down-regulated than protein-coding genes. We validated the expression of these lncRNAs using qPCR. Taken together, this study demonstrates that lncRNAs are differentially expressed between cell lines and wildtype T. brucei and provides evidence for potential evolution of lncRNAs, specifically in T. brucei maintained in culture.


2022 ◽  
Vol 8 (1) ◽  
pp. 5
Author(s):  
Silvia Di Agostino ◽  
Mahrou Vahabi ◽  
Chiara Turco ◽  
Giulia Fontemaggi

Triple-negative breast cancer (TNBC) is a subtype of breast carcinoma characterized by poor prognosis and high rate of metastasis. Current treatment is based on chemo- and/or radiotherapy and surgery. TNBC is devoid of estrogen, progesterone and HER2 receptors. Although precision medicine has come a long way to ameliorate breast cancer disease management, targeted therapies for the treatment of TNBC patients are still limited. Mounting evidence has shown that non-coding RNAs (ncRNAs) drive many oncogenic processes at the basis of increased proliferation, invasion and angiogenesis in TNBC, strongly contributing to tumor progression and resistance to treatments. Many of these ncRNAs are secreted in the tumor microenvironment (TME) and impinge on the activity of the diverse immune and stromal cell types infiltrating the TME. Importantly, secreted ncRNAs may be detected as circulating molecules in serum/plasma from cancer patients and are emerging a promising diagnostic/therapeutic tools in TNBC. This review aims to discuss novel insights about the role of secreted circulating ncRNAs in the intercellular communication in the tumor microenvironment and their potential clinical use as diagnostic and prognostic non-invasive biomarkers in TNBC.


2022 ◽  
Vol 8 (1) ◽  
pp. 4
Author(s):  
Yashraaj Sharma ◽  
Alok Sharma ◽  
Madhu ◽  
Shumayla ◽  
Kashmir Singh ◽  
...  

Long non-coding RNAs (lncRNAs) are transcripts without protein-coding potential that contain more than 200 nucleotides that play important roles in plant survival in response to different stresses. They interact with molecules such as DNA, RNA, and protein, and play roles in the regulation of chromatin remodeling, RNA metabolism, and protein modification activities. These lncRNAs regulate the expression of their downstream targets through epigenetic changes, at the level of transcription and post-transcription. Emerging information from computational biology and functional characterization of some of them has revealed their diverse mechanisms of action and possible roles in biological processes such as flowering time, reproductive organ development, as well as biotic and abiotic stress responses. In this review, we have mainly focused on the role of lncRNAs in biotic stress response due to the limited availability of knowledge in this domain. We have discussed the available molecular mechanisms of certain known lncRNAs against specific pathogens. Further, considering that fungal, viral, and bacterial diseases are major factors in the global food crisis, we have highlighted the importance of lncRNAs against pathogen responses and the progress in plant research to develop a better understanding of their functions and molecular mechanisms.


2022 ◽  
Vol 8 (1) ◽  
pp. 3
Author(s):  
Jairo A. Pinzon Cortes ◽  
Assam El-Osta ◽  
Giulia Fontemaggi ◽  
Nicholas Delihas ◽  
Katsuki Miyazaki ◽  
...  
Keyword(s):  

We are delighted to share with you our seventh Journal Club and highlight some of the most interesting papers published recently [...]


2022 ◽  
Vol 8 (1) ◽  
pp. 2
Author(s):  
Qiao Zhao ◽  
Sabine J. L. Nooren ◽  
Laurien E. Zijlstra ◽  
Jos J. M. Westenberg ◽  
Lucia J. M. Kroft ◽  
...  

The prevalence of end-stage kidney disease (ESKD) is rapidly increasing and mostly occurring in patients aged 65 years or older. The main cause of death in these patients is cardiovascular disease (CVD). Novel markers of vascular integrity may thus be of clinical value for identifying patients at high risk for CVD. Here we associated the levels of selected circulating angiogenic miRNAs, angiopoietin-2 (Ang-2) and asymmetric dimethylarginine (ADMA) with cardiovascular structure and function (as determined by cardiovascular MRI) in 67 older patients reaching ESKD that were included from ‘The Cognitive decline in Older Patients with End stage renal disease’ (COPE) prospective, multicentered cohort study. We first determined the association between the vascular injury markers and specific heart conditions and observed that ESKD patients with coronary heart disease have significantly higher levels of circulating ADMA and miR-27a. Moreover, circulating levels of miR-27a were higher in patients with atrial fibrillation. In addition, the circulating levels of the vascular injury markers were associated with measures of cardiovascular structure and function obtained from cardiovascular MRI: pulse wave velocity (PWV), ejection fraction (EF) and cardiac index (CI). We found Ang-2 and miR-27a to be strongly correlated to the PWV, while Ang-2 also associated with ejection fraction. Finally, we observed that in contrast to miR-27a, Ang-2 was not associated with a vascular cause of the primary kidney disease, suggesting Ang-2 may be an ESKD-specific marker of vascular injury. Taken together, among older patients with ESKD, aberrant levels of vascular injury markers (miR-27a, Ang-2 and ADMA) associated with impaired cardiovascular function. These markers may serve to identify individuals at higher risk of CVD, as well as give insight into the underlying (vascular) pathophysiology.


2022 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Tom Dielforder ◽  
Christina Maria Braun ◽  
Fabian Hölzgen ◽  
Shuang Li ◽  
Mona Thiele ◽  
...  

The synthesis of ribosomes involves the correct folding of the pre-ribosomal RNA within pre-ribosomal particles. The first ribosomal precursor or small subunit processome assembles stepwise on the nascent transcript of the 35S gene. At the earlier stages, the pre-ribosomal particles undergo structural and compositional changes, resulting in heterogeneous populations of particles with highly flexible regions. Structural probing methods are suitable for resolving these structures and providing evidence about the architecture of ribonucleoprotein complexes. Our approach used MNase tethered to the assembly factors Nan1/Utp17, Utp10, Utp12, and Utp13, which among other factors, initiate the formation of the small subunit processome. Our results provide dynamic information about the folding of the pre-ribosomes by elucidating the relative organization of the 5′ETS and ITS1 regions within the 35S and U3 snoRNA around the C-terminal domains of Nan1/Utp17, Utp10, Utp12, and Utp13.


2021 ◽  
Vol 7 (4) ◽  
pp. 80
Author(s):  
Wei Liu ◽  
Yuyan Wang ◽  
Hongchan Huang ◽  
Nadege Fackche ◽  
Kristen Rodgers ◽  
...  

The ability to differentiate between benign, suspicious, and malignant pulmonary nodules is imperative for definitive intervention in patients with early stage lung cancers. Here, we report that plasma protein functional effector sncRNAs (pfeRNAs) serve as non-invasive biomarkers for determining both the existence and the nature of pulmonary nodules in a three-stage study that included the healthy group, patients with benign pulmonary nodules, patients with suspicious nodules, and patients with malignant nodules. Following the standards required for a clinical laboratory improvement amendments (CLIA)-compliant laboratory-developed test (LDT), we identified a pfeRNA classifier containing 8 pfeRNAs in 108 biospecimens from 60 patients by sncRNA deep sequencing, deduced prediction rules using a separate training cohort of 198 plasma specimens, and then applied the prediction rules to another 230 plasma specimens in an independent validation cohort. The pfeRNA classifier could (1) differentiate patients with or without pulmonary nodules with an average sensitivity and specificity of 96.2% and 97.35% and (2) differentiate malignant versus benign pulmonary nodules with an average sensitivity and specificity of 77.1% and 74.25%. Our biomarkers are cost-effective, non-invasive, sensitive, and specific, and the qPCR-based method provides the possibility for automatic testing of robotic applications.


Sign in / Sign up

Export Citation Format

Share Document