The discrete facility location problem with balanced allocation of customers

2011 ◽  
Vol 210 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Alfredo Marín
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Jin Qin ◽  
Ling-lin Ni ◽  
Feng Shi

The combined simulated annealing (CSA) algorithm was developed for the discrete facility location problem (DFLP) in the paper. The method is a two-layer algorithm, in which the external subalgorithm optimizes the decision of the facility location decision while the internal subalgorithm optimizes the decision of the allocation of customer's demand under the determined location decision. The performance of the CSA is tested by 30 instances with different sizes. The computational results show that CSA works much better than the previous algorithm on DFLP and offers a new reasonable alternative solution method to it.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ľuboš Buzna ◽  
Michal Koháni ◽  
Jaroslav Janáček

We present a new approximation algorithm to the discrete facility location problem providing solutions that are close to the lexicographic minimax optimum. The lexicographic minimax optimum is a concept that allows to find equitable location of facilities serving a large number of customers. The algorithm is independent of general purpose solvers and instead uses algorithms originally designed to solve thep-median problem. By numerical experiments, we demonstrate that our algorithm allows increasing the size of solvable problems and provides high-quality solutions. The algorithm found an optimal solution for all tested instances where we could compare the results with the exact algorithm.


Author(s):  
Isaac F. Fernandes ◽  
Daniel Aloise ◽  
Dario J. Aloise ◽  
Thiago P. Jeronimo

The objective in terms of the facility location problem with limited distances is to minimize the sum of distance functions from the facility to its clients, but with a limit on each of these distances, from which the corresponding function becomes constant. The problem is applicable in situations where the service provided by the facility is insensitive after given threshold distances. In this paper, we propose a polynomial-time algorithm for the discrete version of the problem with capacity constraints regarding the number of served clients. These constraints are relevant for introducing quality measures in facility location decision processes as well as for justifying the facility creation.


Algorithmica ◽  
2021 ◽  
Author(s):  
Alexander Grigoriev ◽  
Tim A. Hartmann ◽  
Stefan Lendl ◽  
Gerhard J. Woeginger

AbstractWe study a continuous facility location problem on a graph where all edges have unit length and where the facilities may also be positioned in the interior of the edges. The goal is to position as many facilities as possible subject to the condition that any two facilities have at least distance $$\delta$$ δ from each other. We investigate the complexity of this problem in terms of the rational parameter $$\delta$$ δ . The problem is polynomially solvable, if the numerator of $$\delta$$ δ is 1 or 2, while all other cases turn out to be NP-hard.


2007 ◽  
Vol 158 (17) ◽  
pp. 1922-1930 ◽  
Author(s):  
Hiroaki Ishii ◽  
Yung Lung Lee ◽  
Kuang Yih Yeh

Sign in / Sign up

Export Citation Format

Share Document