scholarly journals Stochastic short-term mine production schedule accounting for fleet allocation, operational considerations and blending restrictions

2016 ◽  
Vol 255 (3) ◽  
pp. 911-921 ◽  
Author(s):  
Martha E. Villalba Matamoros ◽  
Roussos Dimitrakopoulos
2020 ◽  
Vol 21 (4) ◽  
pp. 1717-1743
Author(s):  
Christian Both ◽  
Roussos Dimitrakopoulos

Abstract This article presents a novel stochastic optimization model that simultaneously optimizes the short-term extraction sequence, shovel relocation, scheduling of a heterogeneous hauling fleet, and downstream allocation of extracted materials in open-pit mining complexes. The proposed stochastic optimization formulation considers geological uncertainty in addition to uncertainty related to equipment performances and truck cycle times. The method is applied at a real-world mining complex, stressing the benefits of optimizing the short-term production schedule and fleet management simultaneously. Compared to a conventional two-step approach, where the production schedule is optimized first before optimizing the allocation of the mining fleet, the costs generated by shovel movements are reduced by 56% and lost production due to shovel relocation is cut by 54%. Furthermore, the required number of trucks shows a more balanced profile, reducing total truck operational costs by 3.1% over an annual planning horizon, as well as the required haulage capacity in the most haulage-intense periods by 25%. A metaheuristic solution method is utilized to solve the large optimization problem in a reasonable timespan.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1848
Author(s):  
Ning Li ◽  
Shuzhao Feng ◽  
Haiwang Ye ◽  
Qizhou Wang ◽  
Mingtao Jia ◽  
...  

The working environment of underground mines is complicated, making it difficult to construct an underground mine production plan. In response to the requirements for the preparation of a short-term production plan for underground mines, an optimization model for short-term resource planning was constructed, with the goal of maximizing the total revenue during the planning period. The artificial bee colony optimization algorithm is used to solve the model using MATLAB. According to the basic requirements of underground mine ore haulage and ore hoisting, a haulage equipment inter-stopes dispatch plan model was constructed, with the primary goal of minimizing the haulage equipment wait time. A non-dominated sorting genetic algorithm is used to solve the optimization model. An underground mine is examined using the two models, and the optimization results are compared and verified with the scheme obtained by using traditional optimization algorithms. Results show that based on the improved optimization algorithm, the use of short-term production planning schemes to guide mine production operations can increase the haulage equipment utilization rate, thereby increasing mine production revenue.


2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


Sign in / Sign up

Export Citation Format

Share Document