Conceptual short-term memory (CSTM) supports core claims of Christiansen and Chater

2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.

Author(s):  
Stoo Sepp ◽  
Steven J. Howard ◽  
Sharon Tindall-Ford ◽  
Shirley Agostinho ◽  
Fred Paas

In 1956, Miller first reported on a capacity limitation in the amount of information the human brain can process, which was thought to be seven plus or minus two items. The system of memory used to process information for immediate use was coined “working memory” by Miller, Galanter, and Pribram in 1960. In 1968, Atkinson and Shiffrin proposed their multistore model of memory, which theorized that the memory system was separated into short-term memory, long-term memory, and the sensory register, the latter of which temporarily holds and forwards information from sensory inputs to short term-memory for processing. Baddeley and Hitch built upon the concept of multiple stores, leading to the development of the multicomponent model of working memory in 1974, which described two stores devoted to the processing of visuospatial and auditory information, both coordinated by a central executive system. Later, Cowan’s theorizing focused on attentional factors in the effortful and effortless activation and maintenance of information in working memory. In 1988, Cowan published his model—the scope and control of attention model. In contrast, since the early 2000s Engle has investigated working memory capacity through the lens of his individual differences model, which does not seek to quantify capacity in the same way as Miller or Cowan. Instead, this model describes working memory capacity as the interplay between primary memory (working memory), the control of attention, and secondary memory (long-term memory). This affords the opportunity to focus on individual differences in working memory capacity and extend theorizing beyond storage to the manipulation of complex information. These models and advancements have made significant contributions to understandings of learning and cognition, informing educational research and practice in particular. Emerging areas of inquiry include investigating use of gestures to support working memory processing, leveraging working memory measures as a means to target instructional strategies for individual learners, and working memory training. Given that working memory is still debated, and not yet fully understood, researchers continue to investigate its nature, its role in learning and development, and its implications for educational curricula, pedagogy, and practice.


2003 ◽  
Vol 26 (6) ◽  
pp. 760-769
Author(s):  
Daniel S. Ruchkin ◽  
Jordan Grafman ◽  
Katherine Cameron ◽  
Rita S. Berndt

The goal of our target article is to establish that electrophysiological data constrain models of short-term memory retention operations to schemes in which activated long-term memory is its representational basis. The temporary stores correspond to neural circuits involved in the perception and subsequent processing of the relevant information, and do not involve specialized neural circuits dedicated to the temporary holding of information outside of those embedded in long-term memory. The commentaries ranged from general agreement with the view that short-term memory stores correspond to activated long-term memory (e.g., Abry, Sato, Schwartz, Loevenbruck & Cathiard [Abry etal.], Cowan, Fuster, Grote, Hickok & Buchsbaum, Keenan, Hyönä & Kaakinen [Keenan et al.], Martin, Morra), to taking a definite exception to this view (e.g., Baddeley, Düzel, Logie & Della Sala, Kroger, Majerus, Van der Linden, Colette & Salmon [Majerus et al.], Vallar).


2003 ◽  
Vol 26 (6) ◽  
pp. 737-738 ◽  
Author(s):  
Stephen Grossberg

Neural models have proposed how short-term memory (STM) storage in working memory and long-term memory (LTM) storage and recall are linked and interact, but are realized by different mechanisms that obey different laws. The authors' data can be understood in the light of these models, which suggest that the authors may have gone too far in obscuring the differences between these processes.


2017 ◽  
Vol 26 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Stephen Darling ◽  
Richard J. Allen ◽  
Jelena Havelka

Visuospatial bootstrapping is the name given to a phenomenon whereby performance on visually presented verbal serial-recall tasks is better when stimuli are presented in a spatial array rather than a single location. However, the display used has to be a familiar one. This phenomenon implies communication between cognitive systems involved in storing short-term memory for verbal and visual information, alongside connections to and from knowledge held in long-term memory. Bootstrapping is a robust, replicable phenomenon that should be incorporated in theories of working memory and its interaction with long-term memory. This article provides an overview of bootstrapping, contextualizes it within research on links between long-term knowledge and short-term memory, and addresses how it can help inform current working memory theory.


2003 ◽  
Vol 26 (6) ◽  
pp. 709-728 ◽  
Author(s):  
Daniel S. Ruchkin ◽  
Jordan Grafman ◽  
Katherine Cameron ◽  
Rita S. Berndt

High temporal resolution event-related brain potential and electroencephalographic coherence studies of the neural substrate of short-term storage in working memory indicate that the sustained coactivation of both prefrontal cortex and the posterior cortical systems that participate in the initial perception and comprehension of the retained information are involved in its storage. These studies further show that short-term storage mechanisms involve an increase in neural synchrony between prefrontal cortex and posterior cortex and the enhanced activation of long-term memory representations of material held in short-term memory. This activation begins during the encoding/comprehension phase and evidently is prolonged into the retention phase by attentional drive from prefrontal cortex control systems. A parsimonious interpretation of these findings is that the long-term memory systems associated with the posterior cortical processors provide the necessary representational basis for working memory, with the property of short-term memory decay being primarily due to the posterior system. In this view, there is no reason to posit specialized neural systems whose functions are limited to those of short-term storage buffers. Prefrontal cortex provides the attentional pointer system for maintaining activation in the appropriate posterior processing systems. Short-term memory capacity and phenomena such as displacement of information in short-term memory are determined by limitations on the number of pointers that can be sustained by the prefrontal control systems.


2020 ◽  
Vol 25 (1) ◽  
pp. 63-74
Author(s):  
I.E. Rzhanova ◽  
O.S. Alekseeva ◽  
Yu.A. Burdukova

The article provides an overview of modern works devoted to the study of the relationship between fluid intelligence and working memory. Recently, the world of psychological science has been actively discussing the topic of fluid intelligence and its impact on the academic achievements in childhood. One of the main cognitive characteristics most clearly associated with fluid intelligence is working memory. Working memory is a complex integrative function, in the implementation of which short-term and long-term memory, as well as executive control of attention, are involved. Until now, the debatable question remains, which of the components of working memory is most closely related to fluid intelligence. A number of studies conclude that the role of short-term memory is predominant, while in others executive control is called the most important component. A special place in the study of the relationship between working memory and fluid intelligence is occupied by scientific works which raise the question of the possibilities of improvement of fluid intelligence using working memory training series. In a number of training experiments, it was possible to obtain an improvement in the participants' fluid intelligence indicators after a series of working memory trainings.


Author(s):  
James Jaccard

Cognitive models of political behavior and political decision making have been a staple of research in political science for decades. Recent advances in cognitive psychology and behavioral decision making underscore the utility of models that incorporate memory dynamics for understanding a wide range of political behaviors at the individual level. Four memory systems are relevant; sensory memory, short-term memory, working memory, and long-term memory. Information moves from sensory memory to short-term memory stores, a subset of which is then acted upon by working memory. Working memory manipulates its contents through processes such as reasoning, comprehension, attention, integration, and retrieval of supplementary information from long-term memory. Working memory ultimately holds and processes the thoughts and feelings that are salient to an individual at a given point in time. Memory models of decision making elaborate what cognitions and emotions are likely to enter working memory and how those cognitions and emotions are combined and integrated when making a behavioral decision.


2003 ◽  
Vol 26 (6) ◽  
pp. 743-743 ◽  
Author(s):  
Wolfgang Klimesch ◽  
Bärbel Schack

We focus on the functional specificity of theta and alpha oscillations and show that theta is related to working memory, whereas alpha is related to semantic long-term memory. Recent studies, however, indicate that alpha oscillations also play an important role during short-term memory retention and retrieval. This latter finding provides support for the basic hypothesis suggested by Ruchkin et al.


2020 ◽  
Vol 29 (4) ◽  
pp. 710-727
Author(s):  
Beula M. Magimairaj ◽  
Naveen K. Nagaraj ◽  
Alexander V. Sergeev ◽  
Natalie J. Benafield

Objectives School-age children with and without parent-reported listening difficulties (LiD) were compared on auditory processing, language, memory, and attention abilities. The objective was to extend what is known so far in the literature about children with LiD by using multiple measures and selective novel measures across the above areas. Design Twenty-six children who were reported by their parents as having LiD and 26 age-matched typically developing children completed clinical tests of auditory processing and multiple measures of language, attention, and memory. All children had normal-range pure-tone hearing thresholds bilaterally. Group differences were examined. Results In addition to significantly poorer speech-perception-in-noise scores, children with LiD had reduced speed and accuracy of word retrieval from long-term memory, poorer short-term memory, sentence recall, and inferencing ability. Statistically significant group differences were of moderate effect size; however, standard test scores of children with LiD were not clinically poor. No statistically significant group differences were observed in attention, working memory capacity, vocabulary, and nonverbal IQ. Conclusions Mild signal-to-noise ratio loss, as reflected by the group mean of children with LiD, supported the children's functional listening problems. In addition, children's relative weakness in select areas of language performance, short-term memory, and long-term memory lexical retrieval speed and accuracy added to previous research on evidence-based areas that need to be evaluated in children with LiD who almost always have heterogenous profiles. Importantly, the functional difficulties faced by children with LiD in relation to their test results indicated, to some extent, that commonly used assessments may not be adequately capturing the children's listening challenges. Supplemental Material https://doi.org/10.23641/asha.12808607


Sign in / Sign up

Export Citation Format

Share Document