Learning Generalized Strong Branching for Set Covering, Set Packing, and 0-1 Knapsack Problems

Author(s):  
Yu Yang ◽  
Natashia Boland ◽  
Bistra Dilkina ◽  
Martin Savelsbergh
2008 ◽  
Vol 16 (1) ◽  
pp. 127-147 ◽  
Author(s):  
Anton V. Eremeev

We consider the optimization problem of finding the best possible offspring as a result of a recombination operator in an evolutionary algorithm, given two parent solutions. The optimal recombination is studied in the case where a vector of binary variables is used as a solution encoding. By means of efficient reductions of the optimal recombination problems (ORPs) we show the polynomial solvability of the ORPs for the maximum weight set packing problem, the minimum weight set partition problem, and for linear Boolean programming problems with at most two variables per inequality, and some other problems. We also identify several NP-hard cases of optimal recombination: the Boolean linear programming problems with three variables per inequality, the knapsack, the set covering, the p-median, and some other problems.


2016 ◽  
Vol 44 (2) ◽  
pp. 243-249
Author(s):  
Roberto J. Cañavate ◽  
Mercedes Landete

2013 ◽  
Vol 32 (6) ◽  
pp. 1682-1684
Author(s):  
Na WANG ◽  
Feng-hong XIANG ◽  
Jian-lin MAO

Author(s):  
Prachi Agrawal ◽  
Talari Ganesh ◽  
Ali Wagdy Mohamed

AbstractThis article proposes a novel binary version of recently developed Gaining Sharing knowledge-based optimization algorithm (GSK) to solve binary optimization problems. GSK algorithm is based on the concept of how humans acquire and share knowledge during their life span. A binary version of GSK named novel binary Gaining Sharing knowledge-based optimization algorithm (NBGSK) depends on mainly two binary stages: binary junior gaining sharing stage and binary senior gaining sharing stage with knowledge factor 1. These two stages enable NBGSK for exploring and exploitation of the search space efficiently and effectively to solve problems in binary space. Moreover, to enhance the performance of NBGSK and prevent the solutions from trapping into local optima, NBGSK with population size reduction (PR-NBGSK) is introduced. It decreases the population size gradually with a linear function. The proposed NBGSK and PR-NBGSK applied to set of knapsack instances with small and large dimensions, which shows that NBGSK and PR-NBGSK are more efficient and effective in terms of convergence, robustness, and accuracy.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1839
Author(s):  
Broderick Crawford ◽  
Ricardo Soto ◽  
José Lemus-Romani ◽  
Marcelo Becerra-Rozas ◽  
José M. Lanza-Gutiérrez ◽  
...  

One of the central issues that must be resolved for a metaheuristic optimization process to work well is the dilemma of the balance between exploration and exploitation. The metaheuristics (MH) that achieved this balance can be called balanced MH, where a Q-Learning (QL) integration framework was proposed for the selection of metaheuristic operators conducive to this balance, particularly the selection of binarization schemes when a continuous metaheuristic solves binary combinatorial problems. In this work the use of this framework is extended to other recent metaheuristics, demonstrating that the integration of QL in the selection of operators improves the exploration-exploitation balance. Specifically, the Whale Optimization Algorithm and the Sine-Cosine Algorithm are tested by solving the Set Covering Problem, showing statistical improvements in this balance and in the quality of the solutions.


Sign in / Sign up

Export Citation Format

Share Document