scholarly journals Solving knapsack problems using a binary gaining sharing knowledge-based optimization algorithm

Author(s):  
Prachi Agrawal ◽  
Talari Ganesh ◽  
Ali Wagdy Mohamed

AbstractThis article proposes a novel binary version of recently developed Gaining Sharing knowledge-based optimization algorithm (GSK) to solve binary optimization problems. GSK algorithm is based on the concept of how humans acquire and share knowledge during their life span. A binary version of GSK named novel binary Gaining Sharing knowledge-based optimization algorithm (NBGSK) depends on mainly two binary stages: binary junior gaining sharing stage and binary senior gaining sharing stage with knowledge factor 1. These two stages enable NBGSK for exploring and exploitation of the search space efficiently and effectively to solve problems in binary space. Moreover, to enhance the performance of NBGSK and prevent the solutions from trapping into local optima, NBGSK with population size reduction (PR-NBGSK) is introduced. It decreases the population size gradually with a linear function. The proposed NBGSK and PR-NBGSK applied to set of knapsack instances with small and large dimensions, which shows that NBGSK and PR-NBGSK are more efficient and effective in terms of convergence, robustness, and accuracy.

2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

This article proposes a novel binary version of recently developed Gaining-Sharing knowledge-based optimization algorithm (GSK) to solve binary optimization problems is proposed. GSK algorithm is based on the concept of how humans acquire and share knowledge during their life span. Discrete Binary version of GSK named novel binary Gaining Sharing knowledge-based optimization algorithm (DBGSK) depends on mainly two binary stages: binary junior gaining sharing stage and binary senior gaining sharing stage with knowledge factor 1. These two stages enable DBGSK for exploring and exploitation of the search space efficiently and effectively to solve problems in binary space.An improved scheduling of the technical counselling process for utilization of the electricity from solar energy power stations is introduced. The scheduling aims at achieving the best utilization of the available day time for the counselling group,n this regard,a new application problem is presented, which is called a Travelling Counselling Problem (TCP).A Nonlinear Binary Model is introduced with a real application


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

This article proposes a novel binary version of recently developed Gaining-Sharing knowledge-based optimization algorithm (GSK) to solve binary optimization problems is proposed. GSK algorithm is based on the concept of how humans acquire and share knowledge during their life span. Discrete Binary version of GSK named novel binary Gaining Sharing knowledge-based optimization algorithm (DBGSK) depends on mainly two binary stages: binary junior gaining sharing stage and binary senior gaining sharing stage with knowledge factor 1. These two stages enable DBGSK for exploring and exploitation of the search space efficiently and effectively to solve problems in binary space.An improved scheduling of the technical counselling process for utilization of the electricity from solar energy power stations is introduced. The scheduling aims at achieving the best utilization of the available day time for the counselling group,n this regard,a new application problem is presented, which is called a Travelling Counselling Problem (TCP).A Nonlinear Binary Model is introduced with a real application


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

This paper reports the use of a nature-inspired metaheuristic algorithm known as ‘Whale Optimization Algorithm’ (WOA) for multimodal image registration. WOA is based on the hunting behaviour of Humpback whales and provides better exploration and exploitation of the search space with small possibility of trapping in local optima. Though WOA is used in various optimization problems, no detailed study is available for its use in image registration. For this study different sets of NIR and visible images are considered. The registration results are compared with the other state of the art image registration methods. The results show that WOA is a very competitive algorithm for NIR-visible image registration. With the advantages of better exploration of search space and local optima avoidance, the algorithm can be a suitable choice for multimodal image registration.


2014 ◽  
Vol 2014 ◽  
pp. 1-20 ◽  
Author(s):  
Erik Cuevas ◽  
Adolfo Reyna-Orta

Interest in multimodal optimization is expanding rapidly, since many practical engineering problems demand the localization of multiple optima within a search space. On the other hand, the cuckoo search (CS) algorithm is a simple and effective global optimization algorithm which can not be directly applied to solve multimodal optimization problems. This paper proposes a new multimodal optimization algorithm called the multimodal cuckoo search (MCS). Under MCS, the original CS is enhanced with multimodal capacities by means of (1) the incorporation of a memory mechanism to efficiently register potential local optima according to their fitness value and the distance to other potential solutions, (2) the modification of the original CS individual selection strategy to accelerate the detection process of new local minima, and (3) the inclusion of a depuration procedure to cyclically eliminate duplicated memory elements. The performance of the proposed approach is compared to several state-of-the-art multimodal optimization algorithms considering a benchmark suite of fourteen multimodal problems. Experimental results indicate that the proposed strategy is capable of providing better and even a more consistent performance over existing well-known multimodal algorithms for the majority of test problems yet avoiding any serious computational deterioration.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Said Ali Hassan ◽  
Yousra Mohamed Ayman ◽  
Khalid Alnowibet ◽  
Prachi Agrawal ◽  
Ali Wagdy Mohamed

This article proposes a new problem which is called the Stochastic Travelling Advisor Problem (STAP) in network optimization, and it is defined for an advisory group who wants to choose a subset of candidate workplaces comprising the most profitable route within the time limit of day working hours. A nonlinear binary mathematical model is formulated and a real application case study in the occupational health and safety field is presented. The problem has a stochastic nature in travelling and advising times since the deterministic models are not appropriate for such real-life problems. The STAP is handled by proposing suitable probability distributions for the time parameters and simulating the problem under such conditions. Many application problems like this one are formulated as nonlinear binary programming models which are hard to be solved using exact algorithms especially in large dimensions. A novel binary version of the recently developed gaining-sharing knowledge-based optimization algorithm (GSK) to solve binary optimization problems is given. GSK algorithm is based on the concept of how humans acquire and share knowledge during their life span. The binary version of GSK (BGSK) depends mainly on two stages that enable BGSK for exploring and exploitation of the search space efficiently and effectively to solve problems in binary space. The generated simulation runs of the example are solved using the BGSK, and the output histograms and the best-fitted distributions for the total profit and for the route length are obtained.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

GSK algorithm is based on the concept of how humans acquire and share knowledge through their lifespan. Discrete Binary version of GSK named novel binary Gaining Sharing knowledge-based optimization algorithm (DBGSK) depends on mainly two binary stages: binary junior gaining sharing stage and binary senior gaining sharing stage with knowledge factor 1. These two stages enable BGSK for exploring and exploitation of the search space efficiently and effectively to solve problems in binary space. Besides, one of these practical applications is to optimally schedule the flights for residual stranded citizens due to COVID-19. The problem is defined for a decision maker who wants to schedule a multiple stepped trip for a subset of candidate airports to return the maximum number of residuals of stranded citizens remaining in listed airports while comprising the minimization of the total travelled distances for a carrying airplane. A nonlinear binary mathematical programming model for the problem is introduced with a real application case study, the case study is solved using (DBGSK).


2021 ◽  
Vol 11 (3) ◽  
pp. 1286 ◽  
Author(s):  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Ali Dehghani ◽  
Om P. Malik ◽  
Ruben Morales-Menendez ◽  
...  

One of the most powerful tools for solving optimization problems is optimization algorithms (inspired by nature) based on populations. These algorithms provide a solution to a problem by randomly searching in the search space. The design’s central idea is derived from various natural phenomena, the behavior and living conditions of living organisms, laws of physics, etc. A new population-based optimization algorithm called the Binary Spring Search Algorithm (BSSA) is introduced to solve optimization problems. BSSA is an algorithm based on a simulation of the famous Hooke’s law (physics) for the traditional weights and springs system. In this proposal, the population comprises weights that are connected by unique springs. The mathematical modeling of the proposed algorithm is presented to be used to achieve solutions to optimization problems. The results were thoroughly validated in different unimodal and multimodal functions; additionally, the BSSA was compared with high-performance algorithms: binary grasshopper optimization algorithm, binary dragonfly algorithm, binary bat algorithm, binary gravitational search algorithm, binary particle swarm optimization, and binary genetic algorithm. The results show the superiority of the BSSA. The results of the Friedman test corroborate that the BSSA is more competitive.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
V. Gonuguntla ◽  
R. Mallipeddi ◽  
Kalyana C. Veluvolu

Differential evolution (DE) is simple and effective in solving numerous real-world global optimization problems. However, its effectiveness critically depends on the appropriate setting of population size and strategy parameters. Therefore, to obtain optimal performance the time-consuming preliminary tuning of parameters is needed. Recently, different strategy parameter adaptation techniques, which can automatically update the parameters to appropriate values to suit the characteristics of optimization problems, have been proposed. However, most of the works do not control the adaptation of the population size. In addition, they try to adapt each strategy parameters individually but do not take into account the interaction between the parameters that are being adapted. In this paper, we introduce a DE algorithm where both strategy parameters are self-adapted taking into account the parameter dependencies by means of a multivariate probabilistic technique based on Gaussian Adaptation working on the parameter space. In addition, the proposed DE algorithm starts by sampling a huge number of sample solutions in the search space and in each generation a constant number of individuals from huge sample set are adaptively selected to form the population that evolves. The proposed algorithm is evaluated on 14 benchmark problems of CEC 2005 with different dimensionality.


2022 ◽  
Vol 19 (1) ◽  
pp. 473-512
Author(s):  
Rong Zheng ◽  
◽  
Heming Jia ◽  
Laith Abualigah ◽  
Qingxin Liu ◽  
...  

<abstract> <p>Arithmetic optimization algorithm (AOA) is a newly proposed meta-heuristic method which is inspired by the arithmetic operators in mathematics. However, the AOA has the weaknesses of insufficient exploration capability and is likely to fall into local optima. To improve the searching quality of original AOA, this paper presents an improved AOA (IAOA) integrated with proposed forced switching mechanism (FSM). The enhanced algorithm uses the random math optimizer probability (<italic>RMOP</italic>) to increase the population diversity for better global search. And then the forced switching mechanism is introduced into the AOA to help the search agents jump out of the local optima. When the search agents cannot find better positions within a certain number of iterations, the proposed FSM will make them conduct the exploratory behavior. Thus the cases of being trapped into local optima can be avoided effectively. The proposed IAOA is extensively tested by twenty-three classical benchmark functions and ten CEC2020 test functions and compared with the AOA and other well-known optimization algorithms. The experimental results show that the proposed algorithm is superior to other comparative algorithms on most of the test functions. Furthermore, the test results of two training problems of multi-layer perceptron (MLP) and three classical engineering design problems also indicate that the proposed IAOA is highly effective when dealing with real-world problems.</p> </abstract>


2021 ◽  
Vol 12 (2) ◽  
pp. 1-15
Author(s):  
Khadoudja Ghanem ◽  
Abdesslem Layeb

Backtracking search optimization algorithm is a recent stochastic-based global search algorithm for solving real-valued numerical optimization problems. In this paper, a binary version of backtracking algorithm is proposed to deal with 0-1 optimization problems such as feature selection and knapsack problems. Feature selection is the process of selecting a subset of relevant features for use in model construction. Irrelevant features can negatively impact model performances. On the other hand, knapsack problem is a well-known optimization problem used to assess discrete algorithms. The objective of this research is to evaluate the discrete version of backtracking algorithm on the two mentioned problems and compare obtained results with other binary optimization algorithms using four usual classifiers: logistic regression, decision tree, random forest, and support vector machine. Empirical study on biological microarray data and experiments on 0-1 knapsack problems show the effectiveness of the binary algorithm and its ability to achieve good quality solutions for both problems.


Sign in / Sign up

Export Citation Format

Share Document