scholarly journals POS-261 ROLE OF RETICULOCYTE HAEMOGLOBIN EQUIVALENT(RET HE) IN ASSESSING IRON DEFICIENCY ANAEMIA (IDA) AND FUNCTIONAL IRON DEFICIENCY(FID) IN PATIENTS OF CHRONIC KIDNEY DISEASE

2021 ◽  
Vol 6 (4) ◽  
pp. S111
Author(s):  
S. GROVER ◽  
S. D'Cruz ◽  
A. Tahlan ◽  
M. Singla
Antioxidants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 498 ◽  
Author(s):  
Faisal Nuhu ◽  
Anne-Marie Seymour ◽  
Sunil Bhandari

Background: Mitochondrial dysfunction is observed in chronic kidney disease (CKD). Iron deficiency anaemia (IDA), a common complication in CKD, is associated with poor clinical outcomes affecting mitochondrial function and exacerbating oxidative stress. Intravenous (iv) iron, that is used to treat anaemia, may lead to acute systemic oxidative stress. This study evaluated the impact of iv iron on mitochondrial function and oxidative stress. Methods: Uraemia was induced surgically in male Sprague-Dawley rats and studies were carried out 12 weeks later in two groups sham operated and uraemic (5/6 nephrectomy) rats not exposed to i.v. iron versus sham operated and uraemic rats with iv iron. Results: Induction of uraemia resulted in reduced iron availability (serum iron: 31.1 ± 1.8 versus 46.4 ± 1.4 µM), low total iron binding capacity (26.4 ± 0.7 versus 29.5 ± 0.8 µM), anaemia (haematocrit: 42.5 ± 3.0 versus 55.0 ± 3.0%), cardiac hypertrophy, reduced systemic glutathione peroxidase activity (1.12 ± 0.11 versus 1.48 ± 0.12 U/mL), tissue oxidative stress (oxidised glutathione: 0.50 ± 0.03 versus 0.36 ± 0.04 nmol/mg of tissue), renal mitochondrial dysfunction (proton/electron leak: 61.8 ± 8.0 versus 22.7 ± 5.77) and complex I respiration (134.6 ± 31.4 versus 267.6 ± 26.4 pmol/min/µg). Iron therapy had no effect on renal function and cardiac hypertrophy but improved anaemia and systemic glutathione peroxidase (GPx) activity. There was increased renal iron content and complex II and complex IV dysfunction. Conclusion: Iron therapy improved iron deficiency anaemia in CKD without significant impact on renal function or oxidant status.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Philip A. Kalra ◽  
Sunil Bhandari ◽  
Michael Spyridon ◽  
Rachel Davison ◽  
Sarah Lawman ◽  
...  

Abstract Background Intravenous iron is often used to treat iron deficiency anaemia in non-dialysis chronic kidney disease (ND-CKD), but the optimal dosing regimen remains unclear. We evaluated the impact of high- versus low-dose intravenous iron isomaltoside on the probability of retreatment with intravenous iron in iron-deficient ND-CKD patients. Methods This real-world, prospective, observational study collected data from 256 ND-CKD patients treated for anaemia in the UK. Following an initial course of iron isomaltoside, patients were followed for ≥12 months. Iron dose and the need for retreatment were determined at the investigators’ discretion. The primary study outcome was the need for retreatment at 52 weeks compared between patients who received >1000 mg of iron during Course 1 and those who received ≤1000 mg. Safety was evaluated through adverse drug reactions. Results The probability of retreatment at Week 52 was significantly lower in the >1000 mg iron group (n = 58) versus the ≤1000 mg group (n = 198); hazard ratio (95% confidence interval [CI]): 0.46 (0.20, 0.91); p = 0.012. Mean (95% CI) haemoglobin increased by 6.58 (4.94, 8.21) g/L in the ≤1000 mg group and by 10.59 (7.52, 13.66) g/L in the >1000 mg group (p = 0.024). Changes in other blood and iron parameters were not significantly different between the two groups. Administering >1000 mg of iron isomaltoside saved 8.6 appointments per 100 patients compared to ≤1000 mg. No serious adverse drug reactions were reported. Of the patients who received ≤1000 mg of iron in this study, 82.3% were eligible for a dose >1000 mg. Conclusions The >1000 mg iron isomaltoside regimen reduced the probability of retreatment, achieved a greater haemoglobin response irrespective of erythropoiesis-stimulating agent treatment, and reduced the total number of appointments required, compared to the ≤1000 mg regimen. Many of the patients who received ≤1000 mg of iron were eligible for >1000 mg, indicating that there was considerable underdosing in this study. Trial registration ClinicalTrials.gov NCT02546154, 10 September 2015.


Sign in / Sign up

Export Citation Format

Share Document