Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D

2007 ◽  
Vol 52 (11) ◽  
pp. 3785-3793 ◽  
Author(s):  
Hongping Duan ◽  
Chuanwei Yan ◽  
Fuhui Wang
Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 817
Author(s):  
Zhiquan Huang ◽  
Ruiqiang Wang ◽  
Xintong Liu ◽  
Dongdong Wang ◽  
Heng Zhang ◽  
...  

Coatings prepared by different electrolyte additives were investigated on AZ31 magnesium alloy by plasma electrolytic oxidation. In this study, scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction analysis were employed to assess the morphologies, chemical and phase compositions of the plasma electrolytic oxidation (PEO) coatings, respectively. Furthermore, electrochemical impedance spectroscopy was used to evaluate the corrosion behavior of the composite coating. The investigation of the effect of electrolyte additives in the base electrolyte showed that the PEO specimens exhibit different surface and cross-sectional morphologies, and phase compositions. The results showed that SiO32− was conducive to the growth of the ceramic layer, and the ceramic layer developing in the electrolyte which contained AlO2− showed a typical double-layer structure. The corrosion resistance of coating formed in a phosphate bath was higher than that of the coating formed in silicate bath and coating formed in an aluminate bath. Moreover, the corrosion resistance of the coating formed in the fluoride bath was the highest.


Author(s):  
Veta Mukaeva ◽  
E. Parfenov ◽  
R. Mukaev ◽  
M. Gorbatkov

The issue of modeling the distribution of the electric field in the electrolyzer during the plasma-electrolytic oxidation of a magnesium alloy for the motivation and formation of professional competencies for students in the study of electrical engineering disciplines is considered.


Sign in / Sign up

Export Citation Format

Share Document