Hydrolyzed polyoxymethylenedimethylethers as liquid fuels for direct oxidation fuel cells

2013 ◽  
Vol 108 ◽  
pp. 350-355 ◽  
Author(s):  
Stève Baranton ◽  
Hiroyuki Uchida ◽  
Donald A. Tryk ◽  
Jean Luc Dubois ◽  
Masahiro Watanabe
Author(s):  
Z. F. Zhou ◽  
R. Kumar ◽  
S. T. Thakur ◽  
L. R. Rudnick ◽  
H. Schobert ◽  
...  

Solid oxide fuel cells with ceria, ceria-Cu, and ceria-Rh anode were demonstrated to generate stable electric power with waste vegetable oil through direct oxidation of the fuel. The only pre-treatment to the fuel was a filtration to remove particulates. The performance of the fuel cell was stable over 100 hours for the waste vegetable oil without dilution. The generated power was up to 0.25 W/cm2 for ceria-Rh fuel cell. This compares favorably with previously studied hydrocarbon fuels including jet fuels and Pennsylvania crude oil.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 596 ◽  
Author(s):  
Samuel Simon Araya ◽  
Vincenzo Liso ◽  
Xiaoti Cui ◽  
Na Li ◽  
Jimin Zhu ◽  
...  

This review presents methanol as a potential renewable alternative to fossil fuels in the fight against climate change. It explores the renewable ways of obtaining methanol and its use in efficient energy systems for a net zero-emission carbon cycle, with a special focus on fuel cells. It investigates the different parts of the carbon cycle from a methanol and fuel cell perspective. In recent years, the potential for a methanol economy has been shown and there has been significant technological advancement of its renewable production and utilization. Even though its full adoption will require further development, it can be produced from renewable electricity and biomass or CO2 capture and can be used in several industrial sectors, which make it an excellent liquid electrofuel for the transition to a sustainable economy. By converting CO2 into liquid fuels, the harmful effects of CO2 emissions from existing industries that still rely on fossil fuels are reduced. The methanol can then be used both in the energy sector and the chemical industry, and become an all-around substitute for petroleum. The scope of this review is to put together the different aspects of methanol as an energy carrier of the future, with particular focus on its renewable production and its use in high-temperature polymer electrolyte fuel cells (HT-PEMFCs) via methanol steam reforming.


2008 ◽  
Vol 139 (1-2) ◽  
pp. 77-81 ◽  
Author(s):  
Makiko Asamoto ◽  
Shinji Miyake ◽  
Yoshiteru Itagaki ◽  
Yoshihiko Sadaoka ◽  
Hidenori Yahiro

Sign in / Sign up

Export Citation Format

Share Document