scholarly journals A Review of The Methanol Economy: The Fuel Cell Route

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 596 ◽  
Author(s):  
Samuel Simon Araya ◽  
Vincenzo Liso ◽  
Xiaoti Cui ◽  
Na Li ◽  
Jimin Zhu ◽  
...  

This review presents methanol as a potential renewable alternative to fossil fuels in the fight against climate change. It explores the renewable ways of obtaining methanol and its use in efficient energy systems for a net zero-emission carbon cycle, with a special focus on fuel cells. It investigates the different parts of the carbon cycle from a methanol and fuel cell perspective. In recent years, the potential for a methanol economy has been shown and there has been significant technological advancement of its renewable production and utilization. Even though its full adoption will require further development, it can be produced from renewable electricity and biomass or CO2 capture and can be used in several industrial sectors, which make it an excellent liquid electrofuel for the transition to a sustainable economy. By converting CO2 into liquid fuels, the harmful effects of CO2 emissions from existing industries that still rely on fossil fuels are reduced. The methanol can then be used both in the energy sector and the chemical industry, and become an all-around substitute for petroleum. The scope of this review is to put together the different aspects of methanol as an energy carrier of the future, with particular focus on its renewable production and its use in high-temperature polymer electrolyte fuel cells (HT-PEMFCs) via methanol steam reforming.

2021 ◽  
Author(s):  
Ujjal Mondal ◽  
Ganapati D Yadav

The overuse of fossil fuels has led to the disruption of balance of the carbon cycle: transportation and electricity generation sectors are the most contributors. Among other greenhouse gases, CO2...


Author(s):  
Jeffrey Amelse

Mitigation of global warming requires an understanding of where energy is produced and consumed, the magnitude of carbon dioxide generation, and proper understanding of the Carbon Cycle. The latter leads to the distinction between and need for both CO2 and biomass CARBON sequestration. Short reviews are provided for prior technologies proposed for reducing CO2 emissions from fossil fuels or substituting renewable energy, focusing on their limitations. None offer a complete solution. Of these, CO2 sequestration is poised to have the largest impact. We know how to do it. It will just cost money, and scale-up is a huge challenge. Few projects have been brought forward to semi-commercial scale. Transportation accounts for only about 30% of U.S. overall energy demand. Biofuels penetration remains small, and thus, they contribute a trivial amount of overall CO2 reduction, even though 40% of U.S. corn and 30% of soybeans are devoted to their production. Bioethanol is traced through its Carbon Cycle and shown to be both energy inefficient, and an inefficient use of biomass carbon. Both biofuels and CO2 sequestration reduce FUTURE CO2 emissions from continued use of fossil fuels. They will not remove CO2 ALREADY in the atmosphere. The only way to do that is to break the Carbon Cycle by growing biomass from atmospheric CO2 and sequestering biomass CARBON. Theoretically, sequestration of only a fraction of the world’s tree leaves, which are renewed every year, can get the world to Net Zero CO2 without disturbing the underlying forests.


2013 ◽  
Vol 662 ◽  
pp. 396-401 ◽  
Author(s):  
Nurul Akidah Baharuddin ◽  
Andanastuti Muchtar ◽  
Abu Bakar Sulong ◽  
Huda Abdullah

As an environmentally friendly technology, the fuel cell is one of the alternative technologies that can replace fossil fuels. Various types of fuel cells are available in the market, including the solid oxide fuel cell (SOFC). The planar and tubular designs of SOFC are the leading designs mentioned in the literature. Several factors such as manufacturing cost, manufacturing process and production scale differentiate between the two main designs. Each cell component can be produced using a number of methods, two of which are the most common, namely dry pressing and screen printing techniques for the making of planar SOFC. This paper thus reviews several works that have utilized each of the fabricating methods mentioned. The processing steps, technical parameters, and results, such as the maximum power density of each method are discussed.


Author(s):  
Jeffrey Amelse

Many corporations aspire to become Net Zero Carbon Dioxide by 2030-2050. This paper examines what it will take. It requires understanding where energy is produced and consumed, the magnitude of CO2 generation, and the Carbon Cycle. Reviews are provided for prior technologies for reducing CO2 emissions from fossil to focus on their limitations and to show that none offer a complete solution. Both biofuels and CO2 sequestration reduce future CO2 emissions from fossil fuels. They will not remove CO2 already in the atmosphere. Planting trees has been proposed as one solution. Trees are a temporary solution. When they die, they decompose and release their carbon as CO2 to the atmosphere. The only way to permanently remove CO2 already in the atmosphere is to break the Carbon Cycle by growing biomass from atmospheric CO2 and sequestering biomass carbon. Permanent sequestration of leaves is proposed as a solution. Leaves have a short Carbon Cycle time constant. They renew and decompose every year. Theoretically, sequestrating a fraction of the world’s tree leaves can get the world to Net Zero without disturbing the underlying forests. This would be CO2 capture in its simplest and most natural form. Permanent sequestration may be achieved by redesigning landfills to discourage decomposition. In traditional landfills, waste undergoes several stages of decomposition, including rapid initial aerobic decomposition to CO2, followed by slow anaerobic decomposition to methane and CO2. The latter can take hundreds to thousands of years. Understanding landfill chemistry provides clues to disrupting decomposition at each phase.


2021 ◽  
Vol 83 (3) ◽  
pp. 75-84
Author(s):  
Thareny Ravichandran ◽  
Juhana Jaafar ◽  
Hamid Ilbeygi ◽  
Mochammad Purwanto

Fossil fuels are unsustainable energy storage medium with pollution problems. With the limitation of fossil fuels, fuel cells, which are known as effective electrochemical converters, has attracted much attention. Present review paper provides a complete information on fuel cell technology and history which includes competing technologies, current status of research-and-development and its future direction. Fuel cell plays an important role in stationary applications from 1990s till now due to its efficiency upon reducing emissions.


Author(s):  
Zhiwen Ma ◽  
Josh Eichman ◽  
Jennifer Kurtz

This paper presents the feasibility and economics of using fuel cell backup power systems in telecommunication cell towers to provide grid services (e.g., ancillary services, demand response). The fuel cells are able to provide power for the cell tower during emergency conditions. This study evaluates the strategic integration of clean, efficient, and reliable fuel cell systems with the grid for improved economic benefits. The backup systems have potential as enhanced capability through information exchanges with the power grid to add value as grid services that depend on location and time. The economic analysis has been focused on the potential revenue for distributed telecommunications fuel cell backup units to provide value-added power supply. This paper shows case studies on current fuel cell backup power locations and regional grid service programs. The grid service benefits and system configurations for different operation modes provide opportunities for expanding backup fuel cell applications responsive to grid needs. The objective of this work primarily focuses on how fuel cells can become a significant part of the telecom backup power to reduce system costs, environmental impact, and dependence on fossil fuels, while ensuring continuity of indispensable service for mobile users. The study identifies the approaches on the fuel cell application through nano/microgrids for an extensive network of fuel cells as distributed energy resources. The possibilities of various application scenarios extend the fuel cell technologies and microgrid for reliable power supply.


Reactions ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 115-128
Author(s):  
Yutaro Akimoto ◽  
Yuta Minei ◽  
Keiichi Okajima

For a low-carbon society, it is necessary to extract hydrogen for fuel cells from biogas rather than from fossil fuels. However, impurities contained in the biogas affect the fuel cell; hence, there is a need for system and operation methods to remove these impurities. In this study, to develop a fuel cell system for the effective utilization of biogas-derived hydrogen, the compositional change and concentration of impurities in the hydrogen recirculation system under actual operation were evaluated using process simulation. Then, the mitigation operation for performance degradation using simple purification methods was evaluated on the proton exchange membrane fuel cells (PEMFC) stack. In the process simulation of the hydrogen recirculation system, including the PEMFC stack, the concentration of impurities remained at a level that did not pose a problem to the performance. In the constant voltage test for a simulated gas supply of biogas-derived hydrogen, the conditions for applying the methanation reforming and air bleeding methods were analyzed. As a result, methanation reforming is more suitable for supplying biogas-containing CO to the PEMFC stack for continuous operation.


2021 ◽  
Author(s):  
Kashmiri Baruah ◽  
P. Deb

Direct oxidation fuel cell (DOFC) has been opted as a green alternative to the fossil fuels and intermittent energy resources as it is economically viable, possesses good conversion efficiency, exhibits...


Author(s):  
Jeffrey Amelse

Many corporations aspire to become Net Zero Carbon Dioxide by 2030-2050. This paper examines what it will take. It requires understanding where energy is produced and consumed, the magnitude of CO2 generation, and the Carbon Cycle. Reviews are provided for prior technologies for reducing CO2 emissions from fossil to focus on their limitations and to show that none offer a complete solution. Both biofuels and CO2 sequestration reduce future CO2 emissions from fossil fuels. They will not remove CO2 already in the atmosphere. Planting trees has been proposed as one solution. Trees are a temporary solution. When they die, they decompose and release their carbon as CO2 to the atmosphere. The only way to permanently remove CO2 already in the atmosphere is to break the Carbon Cycle by growing biomass from atmospheric CO2 and sequestering biomass carbon. Permanent sequestration of leaves is proposed as a solution. Leaves have a short Carbon Cycle time constant. They renew and decompose every year. Theoretically, sequestrating a fraction of the world’s tree leaves can get the world to Net Zero without disturbing the underlying forests. This would be CO2 capture in its simplest and most natural form. Permanent sequestration may be achieved by redesigning landfills to discourage decomposition. In traditional landfills, waste undergoes several stages of decomposition, including rapid initial aerobic decomposition to CO2, followed by slow anaerobic decomposition to methane and CO2. The latter can take hundreds to thousands of years. Understanding landfill chemistry provides clues to disrupting decomposition at each phase.


2021 ◽  
Author(s):  
Ankit Sonthalia ◽  
Naveen Kumar ◽  
Mukul Tomar ◽  
Edwin Geo V ◽  
Thiyagarajan S ◽  
...  

Abstract Energy is the driver in the economic development of any country. It is expected that the developing countries like India will account for 25% hike in world-wide energy demand by 2040 due to the increase in the per capita income and rapid industrialization. Most of the developing countries do not have sufficient oil reserves and imports nearly all of their crude oil requirement. The perturbations in the crude oil price, sanctions on Iran and adverse environmental impacts from fossil fuel usage are some of the concern. Therefore, developing countries have started investing heavily in solar and wind power and are considering hydrogen as a future energy resource. Hydrogen is possibly the cleanest fuel and produces only water vapour upon combustion. However, to tap the potential of hydrogen as a fuel, an entirely new infrastructure will be needed for transporting, storing and dispensing it safely, which would be expensive. In the transportation sector, a liquid alternate to fossil fuels will be highly desirable as the existing infrastructure can be used with minor modifications. Amongst the possible liquid fuels, methanol is very promising. Methanol is a single carbon atom compound and can be produced from wide variety of sources such as natural gas, coal, and biomass. The properties of methanol are conducive for use in gasoline engines since it has high octane number and flame speed. Other possible uses of methanol are: as a cooking fuel in rural areas, and as a fuel for running the fuel cells. The present study reviews the limitations in the hydrogen economy and why moving towards methanol economy is more beneficial.


Sign in / Sign up

Export Citation Format

Share Document